首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A quasi-optical SIS mixer designed for efficient radiation coupling is described. The mixer uses a twin-slot antenna which has the advantages of a good beam pattern and a low impedance. The radiation and impedance characteristics of the antenna were obtained from a moment-matched calculation. Tapered superconducting microstrip transmission lines are used to carry the radiation from the slot antennas to the tunnel junction. The effective impedance seen by the tunnel junction is quite low, about 4 Ω, which allows micron-size junctions to be used at 500 GHz. The mixers have been fabricated using Nb/Al-oxide/Nb tunnel junctions and a receiver noise temperature of 420 K (DSB) was measured at 490 GHz, which is the best yet obtained for a quasi-optical mixer at this frequency. The comparatively large junction area increases the mixer saturation power and allows strong suppression of noise from the Josephson effect by the application of a magnetic field of modest strength  相似文献   

2.
《Applied Superconductivity》1999,6(10-12):649-655
The paper presents an overview of recent results for NbN phonon-cooled hot electron bolometric (HEB) mixers. The noise temperature of the receivers based on both quasioptical and waveguide versions of HEB mixer has crossed the level of 1 K·GHz−1 at 430 GHz (410 K) and 600–650 GHz (480 K) and is close to this level at 820 GHz (1100 K) and 900 GHz (980 K). The gain bandwidth measured for quasioptical HEB mixer at 620 GHz reached 4 GHz and the noise temperature bandwidth was almost 8 GHz. Local oscillator power requirements are about 1 μW for mixers made by photolithography and are about 100 nW for mixers made by e-beam lithography. The studies in terahertz receivers based on HEB superconducting mixers now present a dynamic, rapidly developing field.  相似文献   

3.
A 230-GHz subharmonically pumped waveguide mixer employing superconducting tunnel junctions has been developed. We present, in this paper, an experimental study of harmonic superconductor-insulator-superconductor (SIS) mixing at 230 GHz, focusing mainly on its noise behavior. The mixer has a double-tuned waveguide structure and employs an array of four 1.7-/spl mu/m/sup 2/ Nb-AlOx-Nb SIS junctions in series, with /spl omega/R/sub n/C/sub j//spl sim/3 at 230 GHz. Harmonic quantum mixing occurred over an experimental frequency range of 205-235 GHz (local oscillator: 112.5-117.5 GHz), exhibiting corresponding double sideband noise temperatures of lower than 150 K, with a lowest value of 75 K at /spl sim/230 GHz. The measured mixer noise is believed to be the lowest yet reported for a mixer using subharmonic-pump configuration at this frequency. A phenomenon that we attribute to the third harmonic SIS mixing has also been observed.  相似文献   

4.
A heterodyne waveguide receiver employing 1 µm2 Nb superconducting tunnel junctions with on chip integrated tuning structures is characterized from 680–760 GHz. Several different types of integrated tuning structures are investigated. Lowest DSB receiver noise temperatures of 310 K at 709 GHz and 400 K at 720 GHz are measured. Analysis of the data shows that the loss of the superconducting tuning structures has a major influence on the overall receiver performance. A 25% reduction in receiver noise temperature is observed if the mixer is cooled from 4.2 K to 2 K, which we attribute to the reduced loss of the superconducting microstrip lines at lower temperatures. The calculated performance of the different tuning structures is shown to be in good agreement with the actual receiver noise measurements.  相似文献   

5.
The UCB/MPE Submillimeter Heterodyne Spectrometer is a system for ascronomical spectroscopy in the high-frequency atmospheric windows from 500 to 1000 GHz. It contains a molecular laser local oscillator, a cooled Schottky open structure mixer, a quasi-optical coupling system, and an acousto-optical spectrometer. The compact receiver mounts at the Cassegrain focus of large infrared astronomical telescopes. The receiver noise temperature on the telescope is approximately 3500 K (DSB) during observations of the CO J=7→6 line at 806.652 GHz. The spectrometer's frequency resolution and instantaneous bandwidth (<2 MHz resolution across 1.1 GHz) are well suited for observations of molecular emission lines from a variety of astronomical sources.  相似文献   

6.
Arrays of six superconducting tunnel junctions have been used in a heterodyne receiver over the frequency range 35–50 GHz. The mixer array and a 3.7–4.2 GHz parametric amplifier used as the if amplifier are immersed in liquid helium and operated at 2 K. The high if allows single sideband operation with a system noise temperature varying rather smoothly from 220 K at 35 GHz to 140 K at 50 GHz. Mixer noise temperatures between 11 and 21 K were measured over the band indicating that the use of arrays to enhance the dynamic range does not seriously affect the mixer noise performance in this frequency range. The receiver is used for radio astronomical observations in the Onsala 20 m telescope in Sweden.  相似文献   

7.
Antenna characteristics and noise performance of an improved quasi-optical Schottky-barrier diode mixer have been investigated at 800 GHz. We present both calculated and measured antenna patterns. Numerical values are given for the powers radiated in two orthogonal polarizations and for the main beam efficiencies. Measurements indicate that system noise can be reduced by about 25% by adding a conical-horn structure to a corner-cube mixer.  相似文献   

8.
In this paper, we describe the design, fabrication, and the performance of a low-noise dual-polarized quasi-optical superconductor-insulator-superconductor (SIS) mixer at 550 GHz. The mixer utilizes a novel cross-slot antenna on a hyperhemispherical substrate lens, two junction tuning circuits, niobium trilayer junctions, and an IF circuit containing a lumped element 180° hybrid. The antenna consists of an orthogonal pair of twin-slot antennas, and has four feed points, two for each polarization. Each feed point is coupled to a two-junction SIS mixer. The 180° IF hybrid is implemented using a lumped element/microstrip circuit located inside the mixer block. Fourier transform spectrometer measurements of the mixer frequency response show good agreement with computer simulations. The measured co-polarized and cross-polarized patterns for both polarizations also agree with the theoretical predictions. The noise performance of the dual-polarized mixer is excellent giving uncorrected receiver noise temperature of better than 115 K (double sideband) at 528 GHz for both the polarizations  相似文献   

9.
Three Nb/AlOx/Nb SIS detectors, designed to operate in the 400-550, 550-700, and 600-750 GHz bands, have been studied in direct detection mode using a Fourier-transform spectrometer. All three detectors were of quasi-optical type and had on-chip-integrated-fixed tuned SIS junctions. The tuning ranges of the detectors were selected to cover the interesting region around the superconducting gap frequency of Nb (about 700 GHz). Measurements show detector responses at frequencies above the gap frequency, i.e., up to ≈920 GHz, and that cooling the detectors to 3.1 K improved the direct detection responses about 15% below 700 GHz and about 50% for frequencies up to 800 GHz, compared to the responses at 4.2 K. The 500 GHz SIS detector was also studied in a 440-520 GHz heterodyne receiver set up. Good agreement between modeled tuning circuit characteristics, tuning range of the mixer and the direct detection response bandwidths were found. However, it is essential that the dispersion of the field penetration depth into the superconductor is included in the modeling of the tuning circuits when the detector is operated at frequencies above the superconducting gap  相似文献   

10.
Construction details and results of noise measurements on a cryogenically cooled Schottky diode mixer for the 320?360 GHz range are given. Critical mixer parts are electro-formed or machined on a precision lathe. The system double-sideband noise temperature is close to 400 K over a 30 GHz range with a lowest temperature of 385 K at 335 GHz. The mixer uses a tunable contacting backshort and has a total RF/IF double-sideband conversion loss of about 6dB, including input lens and diplexer losses. Corrected for input losses and second-stage contribution, a mixer double-sideband noise temperature of 271 K has been calculated at 335 GHz. This mixer has shown reliable and reproducible performance during five cooldowns to 15 K.  相似文献   

11.
A planar single-ended GaAs Schottky diode mixer has been designed, built, and tested at 119 GHz. The mixer front end includes also a waveguide filter for image rejection, and a temperature compensated ring filter. Measurements at room temperature showed a conversion loss of 7 dB and a noise temperature of 900 K (SSB). At 100 K the measured noise temperature of the mixer was 500 K (SSB).  相似文献   

12.
We have developed a 330-370GHz SIS mixer for small-format, heterodyne, astronomical imaging arrays. Fixed-tuned broadband operation is achieved by means of a superconducting radial waveguide probe. A horn-reflector antenna provides high-efficiency optical coupling. Using a variable-temperature cryogenic noise source, we measured a DSB system noise temperature of 32±1K. The mixer contributes 3±3K, supporting the theoretically-predicted result that the noise temperature of a DSB mixer can be less than hω/2κ (8.6K)  相似文献   

13.
We report recent results on a 20% reduced height 270–425 GHz SIS waveguide receiver employing a 0.49 µm2 Nb/AlO x /Nb tunnel junction. A 50% operating bandwidth is achieved by using a RF compensated junction mounted in a two-tuner reduced height waveguide mixer block. The junction uses an “end-loaded” tuning stub with two quarter-wave transformer sections. We demonstrate that the receiver can be tuned to give 0–2 dB of conversion gain and 50–80% quantum efficiency over parts of it's operating range. The measured instantaneous bandwidth of the receiver is ≈ 25 GHz which ensures virtually perfect double sideband mixer response. Best noise temperatures are typically obtained with a mixer conversion loss of 0.5 to 1.5 dB giving uncorrected receiver and mixer noise temperatures of 50K and 42K respectively at 300 and 400 GHz. The measured double sideband receiver noise temperature is less than 100K from 270 GHz to 425 GHz with a best value of 48K at 376 GHz, within a factor of five of the quantum limit. The 270–425 GHz receiver has a full 1 GHz IF passband and has been successfully installed at the Caltech Submillimeter Observatory in Hawaii. Preliminary tests of a similar junction design in a full height 230 GHz mixer block indicate large conversion gain and receiver noise temperatures below 50K DSB from 200–300 GHz. Best operation is again achieved with the mixer tuned for 0.5–1.5 dB conversion loss which at 258 GHz resulted in receiver and mixer noise temperature of 34K and 27K respectively.  相似文献   

14.
We report on a 850-GHz superconducting-insulator-superconducting (SIS) heterodyne receiver employing an RF-tuned niobium tunnel junction with a current density of 14 kA/cm2, fabricated on a 1-μm Si3N4 supporting membrane. Since the mixer is designed to be operated well above the superconducting gap frequency of niobium (2Δ/h≈690 GHz), special care has been taken to minimize niobium transmission-line losses. Both Fourier transform spectrometer (FTS) measurements of the direct detection performance and calculations of the IF output noise with the mixer operating in heterodyne mode, indicate an absorption loss in the niobium film of about 6.8 dB at 822 GHz. These results are in reasonably good agreement with the loss predicted by the Mattis-Bardeen theory in the extreme anomalous limit. From 800 to 830 GHz, we report uncorrected receiver noise temperatures of 518 or 514 K when we use Callen and Welton's law to calculate the input load temperatures. Over the same frequency range, the mixer has a 4-dB conversion loss and 265 K±10 K noise temperature. At 890 GHz, the sensitivity of the receiver has degraded to 900 K, which is primarily the result of increased niobium film loss in the RF matching network. When the mixer was cooled from 4.2 to 1.9 K, the receiver noise temperature improved about 20% 409-K double sideband (DSB). Approximately half of the receiver noise temperature improvement can be attributed to a lower mixer conversion loss, while the remainder is due to a reduction in the niobium film absorption loss. At 982 GHz, we measured a receiver noise temperature of 1916 K  相似文献   

15.
A cryogenic Schottky diode mixer receiver has been built for the 230-GHz region with true single-sideband operation and a receiver noise temperature as low as 330 K. Local oscillator power is provided by a frequency tripler, with LO injection and sideband filtering accomplished through quasi-optical interferometers. The image sideband is terminated in a cryogenic load with an effective temperature of 33 K. The IF bandwidth is 600 MHz with nearly flat noise, and the RF band is nearly flat over 50 GHz using backshort tuning of the mixer.  相似文献   

16.
A superconducting low-noise receiver has been developed for atmospheric observations in the 650-GHz band. A waveguide-type tunerless mixer mount was designed based on one for the 200-GHz band. Two niobium SIS (superconductor-insulator-superconductor) junctions were connected by a tuning inductance to cancel the junction capacitance. We designed the ωRnCj product to be 8 and the current density to be 5.5 kA/cm2. The measured receiver noise temperature in DSB was 126-259 K in the frequency range of 618-660 GHz at an IF of 5.2 GHz, and that in the IF band (5-7 GHz) was 126-167 K at 621 GHz. Direct detection measurements using a Fourier transform spectrometer (FTS) showed the frequency response of the SIS mixer to be in the range of about 500-700 GHz. The fractional bandwidth was about 14%. The SIS receiver will be installed in a balloon-borne limb-emission sounder that will be launched from Sanriku Balloon Center in Japan.  相似文献   

17.
A planar, quasi-optical SIS (superconductor-insulator-superconductor) receiver operating at 230 GHz is described. The receiver consists of a 2×5 array of half-wave dipole antennas with niobium-aluminum oxide-niobium SIS junctions on a quartz dielectric-filled parabola. The 1.4-GHz intermediate frequency is coupled from the mixer via coplanar strip transmission lines and 4:1 balun transformers. The receiver is operated at 4.2 K in a liquid helium immersion cryostat. Accurate measurements of the performance of single untuned array receiver elements are reported. A mixer noise temperature of 89 K DSB (double sideband), receiver noise temperature of 156 K DSB and conversion loss of 8 dB into a matched load have been obtained. This mixer noise temperature is approximately a factor of two larger than that of current state of the art waveguide mixers using untuned single junctions a the same frequency  相似文献   

18.
In this paper, we describe a superconducting hot-electron-bolometer mixer receiver developed to operate in atmospheric windows between 800-1300 GHz. The receiver uses a waveguide mixer element made of 3-4-nm-thick NbN film deposited over crystalline quartz. This mixer yields double-sideband receiver noise temperatures of 1000 K at around 1.0 THz, and 1600 K at 1.26 THz, at an IF of 3.0 GHz. The receiver was successfully tested in the laboratory using a gas cell as a spectral line test source. It is now in use on the Smithsonian Astrophysical Observatory terahertz test telescope in northern Chile.  相似文献   

19.
Measurements on a cooled resistive mixer are reported using a Mott-barrier diode cooled to 20 K, operating at 115 GHz and pumped with a local oscillator power as low as 150 ?W. The mixer noise temperature of 200 K is not only the lowest reported for a resistive mixer above 90 GHz but indicates that some improvement in shot-noise models for resistive mixers is desirable.  相似文献   

20.
We have designed and fabricated a fixed tuned low noise 600-700 GHz SIS mixer. Twin junctions connected in parallel was employed in the mixer design. A short microstrip tuning structure was used to minimize the RF signal loss at frequency above the energy gap. A receiver noise temperature below 200 K (without any loss correction) in the frequency range of 630 to 660 GHz was recorded. The lowest noise temperature of the receiver was 181 K (without any loss correction) at 656 GHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号