首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to determine the precision of proprioceptive localization of the hand in humans. We derived spatial probability distributions which describe the precision of localization on the basis of three different sources of information: proprioceptive information about the left hand, proprioceptive information about the right hand, and visual information. In the experiment subjects were seated at a table and had to perform three different position-matching tasks. In each task, the position of a target and the position of an indicator were available in a different combination of two of these three sources of information. From the spatial distributions of indicated positions in these three conditions, we derived spatial probability distributions for proprioceptive localization of the two hands and for visual localization. For proprioception we found that localization in the radial direction with respect to the shoulder is more precise than localization in the azimuthal direction. The distributions for proprioceptive localization also suggest that hand positions closer to the shoulder are localized more precisely than positions further away. These patterns can be understood from the geometry of the arm. In addition, the variability in the indicated positions suggests that the shoulder and elbow angles are known to the central nervous system with a precision of 0.6-1.1 degrees. This is a considerably better precision than the values reported in studies on perception of these angles. This implies that joint angles, or quantities equivalent to them, are represented in the central nervous system more precisely than they are consciously perceived. For visual localization we found that localization in the azimuthal direction with respect to the cyclopean eye is more precise than localization in the radial direction. The precision of the perception of visual direction is of the order of 0.2-0.6 degrees.  相似文献   

2.
Recovery of forelimb placing after lateral hypothalamic lesions in the cat (20 Ss) was similar in several respects to the development of placing in kittens (5 Ss). In both recovery and development, the sequence in which sensory systems acquired control over placing was the same: vestibular—proprioceptive— tactile—visual. In addition, within each sensory modality, placing was initially sluggish, exaggerated in amplitude, and susceptible to rapid habituation. Unlike development, however, the recovery of visually guided placing did not require visuomotor experience. (34 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

3.
This article reviews experimental evidence for a specific sensorimotor function which can be dissociated from higher level representations of space. It attempts to delineate this function on the basis of results obtained by psychophysical experiments performed with brain damaged and healthy subjects. Eye and hand movement control exhibit automatic features, such that they are incompatible with conscious control. In addition, they rely on a reference frame different from the one used by conscious perception. Neuropsychological cases provide a strong support for this specific motor representation of space, which can be spared in patients with lesions of primary sensory systems who have lost conscious perception of visual, tactile or proprioceptive stimuli. Observation of these patients also showed that their motor behavior can be "attracted" by a goal only under specific conditions, that is, when the response is immediate and when no cognitive representation of this goal is elaborated at the same time. Beyond the issue of the dissociation between an implicit motor representation and more cognitive processing of spatial information, the issue of the interaction between these two systems is thus a matter of interest. It is suggested that the conscious, cognitive representation of a stimulus can contaminate or override the short-lived motor representation, but no reciprocal influence seem to occur. The interaction observed in patients can also be investigated in normals. The literature provides examples of interaction between sensorimotor and cognitive framing of space, which confirm that immediate action is not mediated by the same system as delayed action, and that elaborating a categorial representation of the action goal prevents the expression of the short-lived sensorimotor representation. It is concluded that action can be controlled by a sensory system which is specialized for on-line processing of relevant goal characteristics. The temporal constraints of this system are such that it can affect the action before a full sensory analysis of this goal has been completed. The performance obtained on the basis of this spatial sensory processing suggests that short-lived motor representations may rather be considered as real "presentation" of the action world, which share its metric properties.  相似文献   

4.
In the control of Functional Electrical Stimulation (FES) gait systems artificial sensors are used to provide the controller with feedback information. The sensors used range in complexity from simple heel or hand switches to tri-axial accelerometers. There are three basic problems connected with the selection of sensors: the type(s) of sensor(s) to be used, the number of sensors required and the optimum location of the sensor set. In general the choice of the sensor sets has been based on the availability of actual sensors and the experts understanding of where these sensors should be located. Using motion analysis data it is possible to construct an almost unlimited number of virtual sensors on any location of the body surface. Our aim was to develop this technique for construction of virtual sensors and compare these virtual sensors with their physical counterparts. Virtual goniometers, inclinometers, accelerometers and foot switches were constructed and compared with their physical counterparts. In addition visualisation tools were developed to aid in the choice of sensor location. There was a very good correlation between all the virtual and physical sensors. This technique gives flexibility to place virtual sensors almost anywhere on the body surface and also allows the construction of novel sensors.  相似文献   

5.
A novel sensor failure detection method is developed in this paper. Sensor failure considered in this paper can be any type of measurement error that is different from the true structural response. The sensors are divided into two groups; sensors that correctly measure the structural responses are termed “reference sensors” and sensors that may fail to correctly measure the structural responses are termed “uncertain sensors” henceforth. A sensor error function is formulated to detect the instants of failure of the corresponding uncertain sensor, using the measurements from reference sensors and the uncertain sensor examined. The sensor error function is derived using indirect and direct approaches. In the indirect approach, the error function is obtained from the state space model in combination with the inverse model and interaction matrix formulation. The input term is eliminated from the error function by applying the inverse model and the interaction matrix is applied to eliminate the state and all unexamined uncertain sensors except for the one examined from the error function. The direct approach uses the singular value decomposition method to establish the coefficients of the error function from the healthy measured data. The sensor failure detection formulation is investigated numerically using a four degree-of-freedom spring-mass-damper system and experimentally using a 4-m-long NASA eight-bay truss structure. It is shown by means of numerical and experimental results that the sensor failure formulation developed correctly detects and isolates the instants of sensor failure and can be implemented in real structural systems for sensor failure detection.  相似文献   

6.
本文用基于传递函数概念的虚拟等价系统方法统一分析各种类型的多变量确定性自校正控制系统的稳定性、收敛性和鲁棒性,分别针对参数估计收敛到真值、参数估计收敛到非真值以及参数估计不收敛的3种情况给出若干定理、推论和注释.在各个判据的基础上,进一步深化对确定性多变量自校正控制系统的理解.所得结论说明:参数估计的收敛性不是确定性多变量自校正控制系统稳定和收敛的必要条件;系统自身的反馈信息对确定性多变量自校正控制是充分的,即外加激励信号不是必要的.   相似文献   

7.
Over the last fifteen years, we have witnessed a rapid expansion in the development of artificial odour sensing systems, or so called 'electronic nose' systems. Whilst the power of this approach to flavour has undoubtedly been demonstrated by its recent application to various complex odours, it will be argued that the original research programme, aimed at developing a comparative model of the biological olfactory pathway, has degenerated into an attempt to obtain an ad hoc workable system, based around readily available sensor and pattern recognition (PARC) technologies. At the time, the first 'model' nose system reflected the limited understanding of sensory information processing carried out within the biological olfactory pathway. We are now presented with an opportunity to evaluate and re-assess the architecture for an electronic nose, in view of the recent advances in understanding the key processing principals exploited by the olfactory bulb and cortex in the identification and characterisation of molecular stimuli. In Part II of this paper, we examine the parallels that exist between the biological olfactory system and the electronic nose. It is shown that the two systems share many similarities in their architectures and other properties, such as odour delivery, nonspecific sensor/receptor response, sensor/receptor preprocessing and content addressable memory (CAM) function. Of particular importance, both systems need to overcome similar operating problems, such as sensor/receptor drift, degeneration and poisoning, limited sensor/receptor sensitivity, discrimination of odour quality invariant of intensity and also the identification of particular odour components within a mixture of background odours. Finally, a number of opportunities for improving the biological plausibility of electronic nose systems are suggested that may yield an improvement in performance.  相似文献   

8.
A data-driven approach for development of a virtual wind-speed sensor for wind turbines is presented. The virtual wind-speed sensor is built from historical wind-farm data by data-mining algorithms. Four different data-mining algorithms are used to develop models using wind-speed data collected by anemometers of various wind turbines on a wind farm. The computational results produced by different algorithms are discussed. The neural network (NN) with the multilayer perceptron (MLP) algorithm produced the most accurate wind-speed prediction among all the algorithms tested. Wavelets are employed to denoise the high-frequency wind-speed data measured by anemometers. The models built with data-mining algorithms on the basis of the wavelet-transformed data are to serve as virtual wind-speed sensors for wind turbines. The wind speed generated by a virtual sensor can be used for different purposes, including online monitoring and calibration of the wind-speed sensors, as well as providing reliable wind-speed input to a turbine controller. The approach presented in this paper is applicable to utility-scale wind turbines of any type.  相似文献   

9.
This paper experimentally investigates the feasibility of an adaptive passive control system, which consists of a magnetorheological (MR) fluid damper and an electromagnetic induction (EMI) part, for suppressing vibration of building structures subjected to ground accelerations. In the adaptive passive control system, the EMI part composed of a permanent magnet and a coil convert the kinetic energy of the relative motion between a building and a damper into the electric energy, which is used for a change in damping characteristics of the MR fluid damper. Since the EMI part can be used as a controller, which determines the command voltage input according to structural responses as well as a power source, the adaptive passive system can be much more compact, convenient, and economic than a conventional active/semiactive system that needs a power supply, a controller, and sensors. To experimentally verify the feasibility of the adaptive passive control system, a shaking table test of a small-scale building model employing the MR fluid damper with the EMI part is conducted. The performance of the adaptive passive control system is compared with that of passively operated MR fluid damper-based semiactive control systems.  相似文献   

10.
The constraints on learning new mappings between visual and proprioceptive spatial dimensions were assessed. Incomplete information was provided about a mapping by specifying only a few isolated visual–proprioceptive pairs of locations. The nature of the generalization occurring to untrained locations was then inspected to reveal the internal constraints. A new technique was developed to allow individual visual–proprioceptive pairs to be manipulated separately. In Experiment 1, training with only a single pair produced a rigid shift of one entire dimension with respect to the other. Training with two pairs caused linear interpolation to all untrained positions between the trained positions (Experiments 2 and 3). Finally, training with three new pairs also produced a linear change in behavior (Experiment 4), even though more adaptive solutions existed. The implications of these results for the learning process involved in acquiring new mappings are discussed. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

11.
The third generation benchmark control problem for seismically excited nonlinear buildings is an effort to evaluate the developed control strategies in order to apply them in field applications. As the fuzzy logic control systems have been applied effectively in various fields, including vibration control of structures, a multiobjective optimal fuzzy logic control system has been proposed in this paper. Two types of control devices, namely, active and hybrid, driven by a fuzzy logic controller (FLC) have been considered in the present study. Nondimensionalized peak interstory drift ratio and peak floor acceleration have been used as the two objective functions for the multiobjective optimal design problem. A two-branch tournament genetic algorithm has been used to find a set of Pareto-optimal solutions, as the optimization problem is not necessarily continuous or convex. Performance of the FLC driven active and hybrid control systems have been evaluated for all three third generation benchmark problems for seismically excited nonlinear buildings (3-, 9- and 20-story). Acceleration and velocity information of different floors have been used as feedback to the FLC. This approach provides a set of Pareto optimal designs, from which a controller design can be selected for the required performance. The FLC driven active control system performs better than the sample controller given in the benchmark problem. Though the number of sensors and control devices are far less, the performance of the hybrid is close to the active control system.  相似文献   

12.
Four experiments are reported that were aimed at elucidating some of the controversial issues concerning the preference for facelike patterns in newborns. The experiments were devised to contrast the original and the revised versions of the sensory hypothesis and the structural hypothesis as accounts of face preference in newborns. Experiments 1A and 1B supported the structural hypothesis by showing a visual preference for the stimulus for which components were located in the correct arrangement for a human face. Experiment 2 supported the sensory hypothesis by showing a visual preference for stimuli that were designed to have the optimal spatial frequency components for the newborn visual system. Experiment 3 showed that babies directed attention to a facelike pattern also when it was presented simultaneously with a nonfacelike stimulus with optimal spatial frequency for the newborn visual system.  相似文献   

13.
Various vertebrate inner-ear end organs appear to have switched their sensory function between equilibrium sensing and acoustic sensing over the courses of various lines of evolution. It is possible that all that is required to make this transition is to provide an end organ with access to the appropriate stimulus mode and frequency range. If, as we believe, however, the adaptive advantage of an acoustic sensory system lies in its ability to sort the total acoustic input into components that correspond to individual acoustic sources, and the adaptive advantage of an equilibrium sensory system lies in its ability to compute the total orientation and motion of the head without regard to the individual sources contributing to that orientation and motion, then it is easy to argue that the differences between acoustic and equilibrium sensors should be more profound than simply access to the appropriate stimuli. Effective signal-sorting requires high resolution in both time and frequency; to achieve this resolution, a peripheral tuning structure must be one of high dynamic order (i.e., constructed from multiple independent energy storage elements). If the peripheral tuning structure simply converts head acceleration to head displacement, velocity, or jerk (i.e., provides one or two steps of integration or differentiation with respect to time, where one energy storage element per step is required), then high dynamic order is inappropriate. Because the bullfrog lagena possesses both acoustic and equilibrium sensitive regions, it is especially suited for comparing these two sensor types and addressing the question of dynamic order of tuning. In this paper we report observations of the linear tuning properties of bullfrog lagenar primary afferent nerve fibers obtained by stimulating the lagena with random, dorsoventral micromotion over the frequency range from 10 Hz to 1.0 kHz. Tuning curves obtained by reverse correlation analysis and discrete Fourier transformation were used to estimate the dynamic order of each fiber's associated peripheral tuning structure. We found two classes of lagenar afferent axons--those with lowpass amplitude tuning characteristics (44 units) and those with bandpass amplitude tuning characteristics (73 units). Lowpass units were found to originate at the equilibrium region of the macula, and they exhibited low dynamic order--summed low- and high-frequency slopes (absolute values) ranged from 10 dB/decade to 64 dB/decade, implying dynamic orders of less than one to three (the modal value was equal to one). Bandpass units were found to originate at the acoustic region of the macula, and they exhibited higher dynamic order than lowpass units--summed low- and high-frequency slopes (absolute values) ranged from 53 dB/decade to 185 dB/decade, implying dynamic orders of three to nine (the modal value was equal to five). It appears that while lagenar equilibrium and acoustic sensors both possess access to signals in the acoustic frequency range, lagenar acoustic sensors are tuned by means of peripheral structures with markedly greater dynamic order and consequently markedly greater physical complexity. These results suggest that steep-sloped (high-dynamic-order) tuning properties reflect special adaptations in acoustic sensors not found in equilibrium sensors, and that any evolutionary transition between the two sensor types must have involved profound structural changes.  相似文献   

14.
Recent research on development of the implantable artificial pancreas for treatment of diabetes is reviewed, based on a Medline literature search that focused on glucose sensors, insulin pumps, and pump control systems. To achieve a closed feedback loop, a clinically applicable implantable artificial pancreas requires miniaturization and coordination of three components: an insulin pump, a blood glucose monitor, and a control system. Recent clinical studies have demonstrated that implantable insulin pumps are feasible for satisfactory control of diabetes for over a year, with the major complication being obstruction of the infusion catheter. Research on continuous glucose sensors has predominantly used the glucose-oxidase reaction or near-infrared light spectroscopy. Implantable glucose oxidase sensors have been limited by local factors causing unstable signal output, whereas optical sensors must overcome interference by substances with absorption spectra similar to glucose. Investigators have developed control algorithms in an effort to stabilize operation of the integrated artificial pancreas in the face of variations in sensor output and pump function. The ultimate goals of fully automatic glucose control by an artificial pancreas include prevention or delay of chronic complications of diabetes, lowered risk of hypoglycemia, and less patient inconvenience and discomfort than with multiple daily glucose self-tests and insulin injection. The recent developments of optical glucose sensing, radiotelemetry systems to link pump and sensor, and miniaturization and refinement of insulin pumps are significant steps toward a clinically applicable artificial pancreas.  相似文献   

15.
The reticular formation of the brainstem contains premotor systems for various musculomotor systems. In this paper, the bulbar premotor systems for jaw and tongue movements, head and neck movements, locomotion, and respiration and vocalization in birds are reviewed and compared to premotor systems in mammals. Roughly, the bulbar reticular formation can be subdivided in three longitudinal zones: a dorsolateral (RPcdl) and a ventromedial (RPcvm) parvocellular zone and a gigantocellular zone (RGc). RPcdl contains premotor neurons for the jaw and neck system, RPcvm for the jaw, tongue and neck system, and RGc for the tongue and locomotory system. RPcdl receives input from the descending sensory trigeminal system, parts of RPcvm and RGc from vestibular nuclei, whereas the tectum has a projection to the contralateral RGc. RPcdl and RPcvm receive substantial telencephalic input through the occipitomesencephalic tract. The bulbar part of the respiratory system consists of a series of cell groups in the ventrolateral reticular formation and has connections with motor centers of the vocalization system. The similarities and differences between the avian and mammalian situation are discussed. Musculomotor systems participate in various activities. It is argued that a premotor system should possess sufficient flexibility to control the participation of a motor system in the different activities. This flexibility may permit the occurrence of learning processes in terms of refining basically existing motor patterns. The emergence of new and more complex motor patterns as in vocalization requires the involvement of hierarchically higher brain centers.  相似文献   

16.
The regulation of breathing is dependent on the complex interaction of three components of the respiratory system: 1) the control centers, 2) the sensors, and 3) the effector organs. The control centers reside in the brainstem and are responsible for the automaticity of breathing. Input into these respiratory centers can be initiated from higher brain centers in order to produce voluntary breathing efforts. Afferent neural signals also come to the central control system from the respiratory sensors, which are divided into two categories: chemoreceptors and sensory receptors. The chemoreceptors respond to changes in the blood oxygen, carbon dioxide, and hydrogen ion concentration by sending impulses to the control center to alter the ventilatory pattern by affecting the effector organs--the respiratory muscles. The sensory receptors are located in the upper and lower airways, the lung, and the muscles of respiration. They also can have a marked effect on the respiratory pattern. It is believed that stimulation of these receptors is important in the initiation of hyperventilation and cough in lung diseases such as asthma. There is also recent evidence that respiratory chemoreceptor responsiveness is abnormal in patients with asthma who have a history of near-fatal attacks.  相似文献   

17.
侯伟 《铜业工程》2012,(5):71-74
目前随着我国汽车工业的发展,汽车电子从所应用的电子元器件到车内电子系统的架构均已进入了一个有本质性提高的新阶段。其中最具有代表性的核心器件之一就是智能传感器。智能传感器是装有微处理器的、能够执行信息处理和信息存储、还能进行逻辑思考和结论判断的传感器系统。智能传感器是传感器集成化与微处理器结合的新一代电子器件,具有自动补偿、自动校准、自动诊断、数据处理、通信等功能。智能传感器能对信息进行处理、分析和调节,能对所测量数值及其误差进行补偿,能借助软件对非线性信号进行线性化处理,还能利用软件实现非线性补偿或其它更复杂的环境补偿。  相似文献   

18.
Interactions between proprioceptive and vestibular inputs contributing to the generation of balance corrections may vary across muscles depending on the availability of sensory information at centres initiating and modulating muscle synergies, and the efficacy with which the muscle action can prevent a fall. Information which is not available from one sensory system may be obtained by switching to another. Alternatively, interactions between sensory systems and the muscle to which this interaction is targeted may be fixed during neural development and not switchable. To investigate these different concepts, balance corrections with three different sets of proprioceptive trigger signals were examined under eyes-open and eyes-closed conditions in the muscles of normal subjects and compared with those of subjects with bilateral peripheral vestibular loss. The different sets of early proprioceptive inputs were obtained by employing three combinations of support surface rotation and translation, for which ankle inputs were nulled, normal or enhanced, the knees were either locked or in flexion, and the trunk was either in flexion or extension. Three types of proprioceptive and vestibulospinal interactions were identified in muscles responses. These interactions were typified by the responses of triceps surae, quadriceps, and paraspinal muscles. The amplitudes of stretch responses at 50 ms after the onset of ankle flexion in triceps surae muscles were related to the velocity of ankle stretch. The amplitude of balance-correcting responses at 100 ms corresponded more with stretch of the biarticular gastrocnemius when the knee was re-extended at 60 ms. Absent stretch reflexes at 50 ms in triceps surae with nulled ankle inputs caused a minor, 12-ms delay in the onset of balance-correcting responses in triceps surae muscles. Vestibular loss caused no change in the amplitude of balance-correcting responses, but a negligible decrease in onset latency in triceps surae even with nulled ankle inputs. Stretch responses in quadriceps at 80 ms increased with the velocity of knee flexion but were overall lower in amplitude in vestibular loss subjects. Balance-correcting responses in quadriceps had amplitudes which were related to the directions of initial trunk movements, were still present when knee inputs were negligible and were also altered after vestibular loss. Stretch and unloading responses in paraspinals at 80 ms were consistent with the direction of initial trunk flexion and extension. Subsequent balance-correcting responses in paraspinals were delayed 20 ms in onset and altered in amplitude by vestibular loss. The changes in the amplitudes of ankle (tibialis anterior), knee (quadriceps) and trunk (paraspinal) muscle responses with vestibular loss affected the amplitudes and timing of trunk angular velocities, requiring increased stabilizing tibialis anterior, paraspinal and trapezius responses post 240 ms as these subjects attempted to remain upright. The results suggest that trunk inputs provide an ideal candidate for triggering balance corrections as these would still be present when vestibular, ankle and knee inputs are absent. The disparity between the amplitudes of stretch reflex and automatic balance-correcting responses in triceps surae and the insignificant alteration in the timing of balance-correcting responses in these muscles with nulled ankle inputs indicates that ankle inputs do not trigger balance corrections. Furthermore, modulation of balance corrections normally performed by vestibular inputs in some but not all muscles is not achieved by switching to another sensory system on vestibular loss. We postulate that a confluence of trunk and upper-leg proprioceptive input establishes the basic timing of automatic, triggered balance corrections which is then preferentially weighted by vestibular modulation in muscles that prevent falling. (ABSTRACT TRUNCATED)  相似文献   

19.
Vestibular inputs tonically activate the anti-gravitative leg muscles during normal standing in humans, and visual information and proprioceptive inputs from the legs are very sensitive sensory loops for body sway control. This study investigated the postural control in a homogeneous population of 50 unilateral vestibular-deficient patients (Ménière's disease patients). It analyzed the postural deficits of the patients before and after surgical treatment (unilateral vestibular neurotomy) of their diseases and it focused on the visual contribution to the fine regulation of body sway. Static posturographic recordings on a stable force-plate were done with patients with eyes open (EO) and eyes closed (EC). Body sway and visual stabilization of posture were evaluated by computing sway area with and without vision and by calculating the percentage difference of sway between EC and EO conditions. Ménière's patients were examined when asymptomatic, 1 day before unilateral vestibular neurotomy, and during the time-course of recovery (1 week, 2 weeks, 1 month, 3 months, and 1 year). Data from the patients were compared with those recorded in 26 healthy, age- and sex-matched participants. Patients before neurotomy exhibited significantly greater sway area than controls with both EO (+52%) and EC (+93%). Healthy participants and Ménière's patients, however, displayed two different behaviors with EC. In both populations, 54% of the subjects significantly increased their body sway upon eye closure, whereas 46% exhibited no change or significantly swayed less without vision. This was statistically confirmed by the cluster analysis, which clearly split the controls and the patients into two well-identified subgroups, relying heavily on vision (visual strategy, V) or not (non-visual strategy, NV). The percentage difference of sway averaged +36.7%+/-10.9% and -6.2%+/-16.5% for the V and NV controls, respectively; +45.9%+/-16.8% and -4.2%+/-14.9% for the V and NV patients, respectively. These two distinct V and NV strategies seemed consistent over time in individual subjects. Body sway area was strongly increased in all patients with EO early after neurotomy (1 and 2 weeks) and regained preoperative values later on. In contrast, sway area as well as the percentage difference of sway were differently modified in the two subgroups of patients with EC during the early stage of recovery. The NV patients swayed more, whereas the V patients swayed less without vision. This surprising finding, indicating that patients switched strategies with respect to their preoperative behavior, was consistently observed in 45 out of the 50 Ménière's patients during the whole postoperative period, up to 1 year. We concluded that there is a differential weighting of visual inputs for the fine regulation of posture in both healthy participants and Ménière's patients before surgical treatment. This differential weighting was correlated neither with age or sex factors, nor with the clinical variables at our disposal in the patients. It can be accounted for by a different selection of sensory orientation references depending on the personal experience of the subjects, leading to a more or less heavy dependence on vision. The change of sensory strategy in the patients who had undergone neurotomy might reflect a reweighting of the visual and somatosensory cues controlling balance. Switching strategy by means of a new sensory selection of orientation references may be a fast adaptive response to the lesion-induced postural instability.  相似文献   

20.
Large-scale functional connectivity in associative learning: interrelations of the rat auditory, visual, and limbic systems. J. Neurophysiol. 80: 3148-3162, 1998. Functional relations between specialized parts of the brain may be important determinants of learned behaviors. To study this, we examined the interrelations of the auditory system with several extraauditory structures in two groups of rats having different behavioral histories. Both groups were trained to associate a tone conditional stimulus (CS) with an aversive unconditional stimulus (US). For one group, a light presented with the tone predicted the absence of the US (group TL-). In the other group, the light was a neutral stimulus (group TL0). Fluorodeoxyglucose (FDG) incorporation was measured in the presence of the tone-light compound. Because the tone-light compound was physically identical for both groups, neural differences between groups reflected differences in the learned associative properties of the stimuli. Covariances of FDG uptake in the auditory system and extraauditory structures were examined using partial least squares. Three strong covariance or functional connectivity patterns were identified. The first pattern mainly reflected similarities between groups, with strong interrelations between the subcortical auditory system and the thalamocortical visual system, cerebellum, deep cerebellar nuclei, and midline thalamus. This pattern of interactions may represent part of a common circuit for relaying the associative value of the tone CS to the cerebellum and the midline thalamus. The external nucleus of the inferior colliculus and medial division of the medial geniculate nucleus were associated more strongly with this pattern for group TL-, which was interpreted as representing the change of the associative value of the tone by the light, mediated through extraauditory influences on these two regions. A second pattern involved midbrain auditory regions, superior colliculus, zona incerta, and subiculum and was stronger for group TL0. The relations between midbrain structures may represent the excitatory conditioned response (CR) evoked by the tone in this group. The final pattern was strongest in group TL- and involved interrelations of the thalamocortical auditory system with hippocampus, basolateral amygdala, and hypothalamus. This pattern may represent the learned inhibition of the CR to the tone in the presence of the light. These findings are consistent with behavioral studies suggesting that at least two types of associations are formed during associative learning. One is the sensory relation of the stimuli and another is the relation between the CS and the affective components of the US. These behavioral associations are mapped to the patterns of functional connectivity between auditory and extraauditory regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号