首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 10q25-26 region between the dinucleotide markers D10S587 and D10S216 is deleted in glioblastomas and, as we have recently shown, in low-grade oligodendrogliomas. We further refined somatic mapping on 10q23-tel and simultaneously assessed the role of the candidate tumor suppressor gene PTEN/MMAC1 in glial neoplasms by sequence analysis of eight low-grade and 24 high-grade gliomas. These tumors were selected for partial or complete loss of chromosome 10 based on deletion mapping with increased microsatellite marker density at 10q23-tel. Three out of eight (38%) low-grade and 3/24 (13%) high-grade gliomas exclusively target 10q25-26. We did not find a tumor only targeting 10q23.3, and most tumors (23/32, 72%) showed large deletions on 10q including both regions. The sequence analysis of PTEN/MMAC1 revealed nucleotide alterations in 1/8 (12.5%) low-grade gliomas in a tumor with LOH at l0q21-qtel and in 5/21 (24%) high-grade gliomas displaying LOH that always included 10q23-26. Our refined mapping data point to the 10q25-26 region as the primary target on 10q, an area that also harbors the DMBT1 candidate tumor suppressor gene. The fact that we find hemizygous deletions at 10q25-qtel in low-grade astrocytomas and oligodendrogliomas - two histologically distinct entities of gliomas - suggests the existence of a putative suppressor gene involved early in glial tumorigenesis.  相似文献   

2.
Loss of heterozygosity (LOH) on chromosome 10 is the most frequent genetic alteration associated with the evolution of malignant astrocytic tumors and it may involve several loci. The tumor suppressor gene PTEN (MMAC1) on chromosome 10q23 is mutated in approximately 30% of glioblastomas (WHO Grade IV). In this study, we assessed the frequency of PTEN mutations in primary glioblastomas, which developed clinically de novo, and in secondary glioblastomas, which evolved from low-grade (WHO Grade II) or anaplastic astrocytomas (WHO Grade III). Nine of 28 (32%) primary glioblastomas contained a PTEN mutation and an additional case showed a homozygous PTEN deletion. This indicates that after overexpression/amplification of the EGF receptor, loss of PTEN function is the most common alteration in primary glioblastomas. In this series, 5 of 28 (18%) primary glioblastomas showed both a PTEN mutation and EGFR amplification. In contrast, only 1 of 25 (4%) secondary glioblastomas contained a PTEN mutation, and none of them showed a homozygous PTEN deletion. The secondary glioblastoma with a PTEN mutation developed from an anaplastic astrocytoma that already carried the mutation. The observation that secondary glioblastomas have a p53 mutation as a genetic hallmark but rarely contain a PTEN mutation supports the concept that primary and secondary glioblastomas develop differently on a genetic level.  相似文献   

3.
Endometrial carcinomas represent the most common gynecological cancer in the United States, yet the molecular genetic events that underlie the development of these tumors remain obscure. Chromosome 10 is implicated in the pathogenesis of endometrial carcinoma based on loss of heterozygosity (LOH), comparative genomic hybridization, and cytogenetics. Recently, a potential tumor suppressor gene, PTEN/MMAC1, with homology to dual-specificity phosphatases and to the cytoskeletal proteins tensin and auxillin was identified on chromosome 10. This gene is mutated in several types of advanced tumors that display frequent LOH on chromosome 10, most notably glioblastomas. Additionally, germ-line mutations of PTEN/MMAC1 are responsible for several familial neoplastic disorders, including Cowden disease and Bannayan-Zonana syndrome. Because this locus is included in the region of LOH in many endometrial carcinomas, we examined 70 endometrial carcinomas for alterations in PTEN/MMAC1. Somatic mutations were detected in 24 cases (34%) including 21 cases that resulted in premature truncation of the protein, 2 tumors with missense alterations in the conserved phosphatase domain, and 1 tumor with a large insertion. These data indicate that PTEN/MMAC1 is more commonly mutated than any other known gene in endometrial cancers.  相似文献   

4.
A novel tumor suppressor gene, PTEN/MMAC1, has been recently shown to be mutated in gliomas, breast, prostate, kidney cancers and melanomas. Loss-of-heterozygosity studies in melanoma have suggested the presence of at least one chromosome 10q locus lost early in tumor progression. In this study, we screened 45 melanoma cell lines and 17 paired uncultured metastatic melanoma and peripheral blood specimens for PTEN/ MMAC1 alterations using PCR-SSCP and direct sequencing. We found nine melanoma cell lines with homozygous deletions (five with intragenic loss) and four cell lines with mutations (one nonsense and one frameshift; two intronic); from among our uncultured melanoma specimens, we found one tumor with a somatic 17 bp duplication in exon 7 leading to a premature stop codon and one tumor with a possible homozygous deletion. Furthermore, we have identified a novel intragenic polymorphism within intron 4 of PTEN/MMAC1. Taken together, these data suggest that PTEN/MMAC1 may be a chromosome 10q tumor suppressor important in melanoma tumor formation or progression.  相似文献   

5.
Loss of chromosome 10q is a frequently observed genetic defect in prostate cancer. Recently, the PTEN/MMAC1 tumor suppressor gene was identified and mapped to chromosome 10q23.3. We studied PTEN structure and expression in 4 in vitro cell lines and 11 in vivo xenografts derived from six primary and nine metastatic human prostate cancers. DNA samples were allelotyped for eight polymorphic markers within and surrounding the PTEN gene. Additionally, the nine PTEN exons were tested for deletions. In five samples (PC3, PC133, PCEW, PC295, and PC324), homozygous deletions of the PTEN gene or parts of the gene were detected. PC295 contained a small homozygous deletion encompassing PTEN exon 5. In two DNAs (PC82 and PC346), nonsense mutations were found, and in two (LNCaP and PC374), frame-shift mutations were found. Missense mutations were not detected. PTEN mRNA expression was clearly observed in all cell lines and xenografts without large homozygous deletions, showing that PTEN down-regulation is not an important mechanism of PTEN inactivation. The high frequency (60%) of PTEN mutations and deletions indicates a significant role of this tumor suppressor gene in the pathogenesis of prostate cancer.  相似文献   

6.
The majority of familial medullary thyroid neoplasms are associated with germ-line mutations of the RET proto-oncogene, yet very little is known about the mechanisms involved in the pathogenesis of familial and sporadic nonmedullary thyroid tumors. A subset of thyroid tumors have loss of heterozygosity of chromosome 10q22-23, a region harboring the gene responsible for Cowden disease, an autosomal dominant hamartoma syndrome associated with thyroid and breast tumors. PTEN/MMAC1/TEP1 codes for a dual-specificity phosphatase and is likely a tumor suppressor gene. We sought to determine the PTEN status in a series of epithelial thyroid neoplasms. We studied 95 sporadic thyroid tumors, of which 39 were papillary thyroid carcinomas (PTCs), 12 were follicular carcinomas, 9 were anaplastic carcinomas, 5 were Hürthle cell carcinomas, 21 were nonfunctioning follicular adenomas, and 9 were Hürthle cell adenomas. Direct sequencing of PCR-amplified products was performed for all nine exons of PTEN. Two polymorphic markers, one located in intron 8 and another, a dinucleotide repeat marker, AFMa086wg9, located within intron 2, were analyzed in paired blood-tumor DNA samples to assess hemizygous deletions of PTEN. We found a somatic frameshift mutation in one PTC, which was expected to generate a premature stop codon 2 amino acids downstream. Twenty-six % of informative benign tumors (four follicular adenomas and three Hürthle cell adenomas) and only 3 of 49 (6.1%) informative malignant tumors (one PTC, one follicular carcinoma, and one anaplastic carcinoma) showed evidence of hemizygous deletion of PTEN (P = 0.046). We conclude that a subset of thyroid tumors have somatic deletions of the PTEN gene, predominantly the benign forms, and that small intragenic mutations of PTEN are infrequent in thyroid tumors. We speculate that other mechanisms of PTEN inactivation, rather than small intragenic mutations, might occur in the hemizygously deleted samples and act as the "Knudson second hit." Alternatively, other tumor suppressor genes mapping to chromosome 10q22-23 could be the actual targets for such deletions and thus represent the various hits in the pathway of multistep carcinogenesis.  相似文献   

7.
8.
Loss of heterozygosity (LOH) of chromosome 10q is observed in approximately 40% of endometrial cancers. Mutations in PTEN/MMAC1, a gene recently isolated from the 10q23 region, are responsible for two dominantly inherited neoplastic syndromes, Cowden disease and Bannayan-Zonana syndrome. Somatic mutations of this gene have also been detected in sporadic cancers of the brain, prostate and breast. To investigate the potential role of this putative tumor suppressor gene in endometrial carcinogenesis as well, we examined 46 primary endometrial cancers for LOH at the 10q23 region, and for mutations in the entire coding region and exon-intron boundaries of the PTEN/MMAC1 gene. LOH was identified in half of the 38 informative cases, and subtle somatic mutations were detected in 15 tumors (33%). Our results suggest that of the genes studied so far in endometrial carcinomas, PTEN/MMAC1 is the most commonly mutated one, and that inactivation of both copies by allelic loss and/or mutation, a pattern that defines genes as "tumor suppressors," contributes to tumorigenesis in endometrial cancers.  相似文献   

9.
A new tumor suppressor gene PTEN/MMAC1 was recently isolated at chromosome 10q23 and found to be inactivated by point mutation or homozygous deletion in glioma, prostate and breast cancer. PTEN/MMAC1 was also identified as the gene predisposing to Cowden disease, an autosomal dominant cancer predisposition syndrome associated with an increased risk of breast, skin and thyroid tumors and occasional cases of other cancers including bladder and renal cell carcinoma. We screened 345 urinary tract cancers by microsatellite analysis and found chromosome 10q to be deleted in 65 of 285 (23%) bladder and 15 of 60 (25%) renal cell cancers. We then screened the entire PTEN/MMAC1 coding region for mutation in 25 bladder and 15 renal cell primary tumors with deletion of chromosome 10q. Two somatic point mutations, a frameshift and a splicing variant, were found in the panel of bladder tumors while no mutation was observed in the renal cell carcinomas. To screen for homozygous deletion, we isolated two polymorphic microsatellite repeats from genomic BAC clones containing the PTEN/MMAC1 gene. Using these new informative markers, we identified apparent retention at the gene locus indicative of homozygous deletion of PTEN/MMAC1 in four of 65 bladder and 0 of 15 renal cell tumors with LOH through chromosome 10q. Identification of the second inactivation event in six bladder tumors with LOH of 10q implies that the PTEN/MMAC1 gene is occasionally involved in bladder tumorigenesis. However, the low frequency of biallelic inactivation suggests that either PTEN/MMAC1 is inactivated by other mechanisms or it is not the only target of chromosome 10q deletion in primary bladder and renal cell cancer.  相似文献   

10.
We studied PTEN/MMAC1, a newly discovered candidate tumor suppressor gene at 10q23.3, for mutations in lung cancer. One hundred and thirty-six lung cancer cell line DNAs (66 small cell lung cancers, SCLC, 61 non-small cell lung cancers, NSCLC, four mesotheliomas, five extrapulmonary small cell cancers) were analysed for PTEN/MMAC1 homozygous deletions and five (8%) SCLC lines showed homozygous deletions interrupting the PTEN/MMAC1 gene. Using single stranded conformation polymorphism (SSCP) analysis, we screened the PTEN/MMAC1 open reading frame of 53 lung cancer cell line cDNAs for point mutations and found that 3/35 SCLCs and 3/18 NSCLCs contained homozygous amino acid sequence altering mutations. Northern blot analysis revealed that expression of the PTEN/MMAC1 gene was considerably lower in all the tumor cell lines with point mutations while no expression was detected for cell lines with PTEN/MMAC1 homozygous deletions. Mutation analysis of 22 uncultured, microdissected, primary SCLC tumors and metastases showed two silent mutations, and two apparent homozygous deletions. We also discovered a processed pseudogene (PTEN2) which has 98.5% nt identity to PTEN/MMAC1, that needs to be accounted for in cDNA mutation analysis. Our findings suggest that genetic abnormalities of the PTEN/MMAC1 gene are only involved in a relatively small subset of lung cancers.  相似文献   

11.
The genes involved in the genesis and progression of adult astrocytic tumors have been an area of considerable investigation. The tumor suppressor gene, p53, has been implicated, as has the epidermal growth factor receptor gene. Additional currently unidentified genes lie on chromosomes 10 and 19. Interestingly, work on pediatric astrocytomas suggests that the genes involved are different. p53 is rarely mutated in pediatric tumors, the epidermal growth factor receptor gene is rarely amplified or mutated, and chromosome 10 deletions are rare. The only pediatric tumor that seems to mimic the findings in adult tumors is brainstem glioma, perhaps explaining the uniformly grim prognosis in this type of tumor. In the pilocytic astrocytoma of childhood, mutations in the neurofibromatosis type I gene have been implicated in tumor development. In this review, the oncogenesis of pediatric gliomas is discussed and compared and contrasted to what is known about tumors.  相似文献   

12.
13.
In malignant gliomas, the characteristically heterogeneous features and frequent diffuse spread within the brain have raised the question of whether malignant gliomas arise monoclonally from a single precursor cell or polyclonally from multiple transformed cells forming confluent clones. Although monoclonality has been shown in surgically resected tissues, these may not include the full spectrum of patterns seen on autopsy material. Little is known about the clonality of low-grade gliomas from which malignant gliomas may sometimes arise. We sought to investigate the clonality of low-grade and malignant gliomas by using and comparing surgical and autopsy material with a Polymerase chain reaction (PCR)-based assay for nonrandom X chromosome inactivation. For that, purpose, archival surgical and autopsy material from 15 female patients (group A) (age 4 to 73 years; median, 45) with malignant gliomas (12 glioblastomas, one gliosarcoma, one anaplastic oligoastrocytoma, one gliomatosis cerebri), surgical material only from 21 female patients (group S) (age 6 to 78 years; median, 60) with low-grade and malignant gliomas (four low-grade astrocytomas, three oligoastrocytomas, two anaplastic astrocytomas, one gemistocytic astrocytoma, four oligodendrogliomas, seven glioblastomas) were analyzed. In group A, representative areas (mean = 5/patient; median = 7) were microdissected from tissue sections and assayed by PCR amplification of a highly polymorphic microsatellite marker locus of the human androgen receptor gene (HUMARA) in the presence of alpha32P with and without predigestion with a methylation-sensitive restriction enzyme (HhaI). Products were resolved by denaturing gel electrophoresis and autoradiographed. In group S, selected tumor areas were used for the assay. Each patient's normal brain tissue was used for control. The band intensity of alleles were measured by densitometric scanning. In group A, 13 of 15 cases were informative (heterozygous). The same pattern of nonrandom X chromosome inactivation was present in all areas of solid dense and moderate tumor infiltration in eight including all components of the gliosarcoma. Two of eight also showed focal loss of heterozygosity (LOH). One of 13 presented global LOH. Two of 13 showed microsatellite instability, one of which in a patient with Turcot syndrome, the other in gliomatosis cerebri. Opposite skewing patterns were seen in distant areas of gliomatosis cerebri consistent with oligoclonal derivation. Clonality remained indeterminate in one glioblastoma and in the anaplastic oligoastrocytoma because of skewed lyonization in the normal control. In group S, 19 of 21 cases were informative. Fifteen of 19 were monoclonal (four low-grade astrocytomas, one anaplastic astrocytoma, one gemistocytic astrocytoma, two oligodendrogliomas, one oligoastrocytoma, six glioblastomas). Four of 19 were indeterminate. We conclude that (1) Low-grade and malignant gliomas are usually monoclonal tumors, and extensively infiltrating tumors must result from migration of tumor cells (2) Gliomatosis cerebri may initiate as an oligoclonal process or result from collision gliomas (3) Biphasic gliomas likely arise from a single precursor cell. (4) LOH at the HUMARA locus is probably related to partial or complete deletion of an X-chromosome, which occurs in malignant gliomas during clonal evolution.  相似文献   

14.
Recent studies have shown that there are distinct genetic pathways leading to the most malignant astrocytic neoplasm, the glioblastoma. Primary (de novo) glioblastomas are characterized by amplification/overexpression of the EGF receptor (EGFR) and, less frequently, of the MDM2 gene. Another pathway, operative in the progression of low-grade or anaplastic astrocytomas to secondary glioblastomas, is characterized by the frequent occurrence of p53 mutations. In this study, we assessed p53 mutations and EGFR expression in the giant cell glioblastoma. This rare variant is characterized by unusually large, multinucleated giant cells, but tends to be more confined and has been reported to carry a somewhat more favorable prognosis. We analyzed biopsies from 16 patients (mean age at clinical manifestation, 40 years). DNA sequencing revealed that 12 of 16 (75%) giant cell glioblastomas contained a p53 mutation. In 7 patients with two or more surgical interventions, the p53 mutation was already detected in the first biopsy. Focal EGFR overexpression, including multinucleated giant cells, was observed immunohistochemically in 9 of 16 (56%) tumors. However, most tumor areas lacked immunoreactivity, indicating that EGFR overexpression does not play a significant role in the evolution of this glioblastoma variant. These results suggest that giant cell glioblastomas develop de novo with a short preoperative history (mean, 47 +/- 40 days), but contain genetic alterations similar to those observed in secondary glioblastomas.  相似文献   

15.
To characterize some of the genetic events underlying the development of glioblastoma multiforme, the authors analyzed 65 astrocytic tumors (seven pilocytic astrocytomas, eight astrocytomas, 16 anaplastic astrocytomas, and 34 glioblastomas multiforme) for loss of heterozygosity for chromosome 17p, loss of heterozygosity for chromosomes 10p and 10q, amplification of the epidermal growth factor receptor (EGFR) gene, and amplification of the oncogenes N-myc, c-myc, and N-ras using Southern blot analysis. Alterations of the p53 gene (positive immunostaining for p53 protein in tumors with or without p53 gene mutations) in these 65 tumors were analyzed previously. None of the 65 tumors showed amplification or rearrangement of N-myc, c-myc, or N-ras oncogenes. The molecular analysis presented here demonstrates distinct variants of astrocytic tumors, with at least three genetic pathways leading to glioblastoma multiforme. One pathway was characterized by 43 astrocytomas with alterations in p53. Glioblastomas with p53 alterations may represent tumors that progress from lower-grade astrocytomas. This variant was more likely to show loss of chromosome 17p than tumors without p53 alterations (p < 0.04). Seventy-five percent of tumors with loss of one 17p allele demonstrated mutations in the p53 gene. Loss of chromosome 10 was associated with progression from anaplastic astrocytoma (13%) to glioblastoma (38%) (p < 0.04). Amplification of the EGFR gene was a rare (7%) but late event in tumor progression (p < 0.03). A second pathway was characterized by six astrocytomas without p53 alterations and may represent clinically de novo high-grade tumors. These tumors were more likely to show amplification of the EGFR gene (83%) than tumors with p53 alterations. Sixty percent of tumors with EGFR amplification also showed loss of chromosome 10; loss of chromosome 17p was infrequent in this variant. One or more alternative pathways were characterized by 16 astrocytomas without p53 alterations and with none of the genetic changes analyzed in this study. Glioblastomas are a heterogeneous group of tumors that may arise via multiple genetic pathways.  相似文献   

16.
NS Litofsky  D Hinton  C Raffel 《Canadian Metallurgical Quarterly》1994,34(6):967-72; discussion 972-3
Mutations in the p53 gene, which codes for a cell division regulatory protein, have been identified in approximately one-third of adult astrocytomas. We evaluated 35 astrocytic tumors (17 pilocytic, 4 diffuse low grade, 12 anaplastic, and 2 glioblastoma) in pediatric patients for p53 mutations, using polymerase chain reaction-single-stranded conformation polymorphism analysis as a screening technique. Additionally, those tumors identified with homozygosity in the area of the p53 gene on chromosome 17 by Southern blotting were sequenced to look for p53 mutations. No tumors were identified with polymerase chain reaction-single-stranded conformation polymorphism analysis shifts indicative of mutations in the p53 gene. Five of 21 tumors were homozygous in the region of the p53 gene on chromosome 17; no mutations in exons 5 to 8 were found in any of these tumors. The frequency of p53 mutation in pediatric astrocytomas is significantly less than the frequency for adult tumors, regardless of tumor grade. Furthermore, the frequency of p53 mutations in high-grade astrocytomas is significantly lower in pediatric tumors than in adult tumors. These results suggest that p53 is not important in the oncogenesis of pediatric astrocytomas. Oncogenesis in pediatric astrocytomas may occur by different mechanisms than those of similar tumors in adults.  相似文献   

17.
Recently, a novel phosphatase designated PTEN/MMAC1/TEP1 and located on chromosome 10q23.3 has been implicated as a new tumor suppressor gene in human cancer. Allelic loss and mutation of this gene has been reported in epithelial derived tumors, including breast cancer and prostate cancer, and in glioblastoma multiforme. The present study was designed to evaluate the potential involvement of PTEN in the pathogenesis of lymphoid neoplasms. We analyzed 27 hematopoietic cell lines (representing a variety of lymphoid lineages), 65 primary lymphoid tumors (including 24 lymphoblastic leukemia/lymphoma [LBL], 30 large B-cell lymphoma [LBCL], 7 Burkitt's lymphoma [BL], and 4 anaplastic large cell lymphoma [ALCL]), and 25 nonmalignant lymph node controls. Gene deletion and gross rearrangement were evaluated using Southern blot analysis, and mutations were studied by polymerase chain reaction (PCR)-single-strand conformation polymorphism (SSCP) (PCR-SSCP) and sequencing. Six of 27 cell lines (22.2%) and 3 of 65 primary lymphomas (4.6%) contained alterations of this gene. A large homozygous deletion spanning exons 2 through 5 was detected in one LBL cell line, and two insertions potentially resulting in premature termination, were detected in a second LBL cell line. Nonconservative nucleotide variations were found in two other cell lines (one LBCL and one BL) and in one primary case of LBCL. In addition, two other cell lines (one BL and one myeloma) and two primary lymphomas, both LBCL, contained small deletions within intron 7. These deletions mapped to a poly-T-rich tract just 5' to the intron 7/exon 8 spice site. Their significance is unclear, as they may represent polymorphisms. Overall, our results suggest that abnormalities of the PTEN gene can contribute to pathogenesis in a small percentage of malignant lymphomas.  相似文献   

18.
OBJECTIVES: Tumor suppressor gene mutations in both p53 and PTEN/MMAC1 genomic DNA have been detected in many types of cancer. The purpose of this study was to investigate the presence and importance of PTEN/MMAC1 mutations in squamous cell carcinomas. METHODS: Exons of each gene were amplified after polymerase chain reaction (PCR) using genomic DNA derived from cell lines of squamous cell carcinoma of the head and neck (SCCHN) and snap-frozen biopsy specimens from primary established head and neck tumors. The amplified and purified DNA was then sequenced directly. RESULT: As anticipated, point mutations of the p53 gene were found in 80% of cell lines examined. A single base mutation in codon 151 was found in six of 10 cell lines studied. PTEN/MMAC1 gene mutations were found in neither the cell lines tested nor the tumor biopsy samples. CONCLUSION: This study, as well as a large volume of data, confirms that mutations of the p53 gene are frequent events in head and neck cancer cell lines. Although PTEN/MMAC1 gene mutations have been found in a variety of carcinomas, this gene was not found to be mutated in SCCHN cell lines or in primary squamous cell carcinomas of the head and neck. This information is useful for further studies of mutations in these cell lines.  相似文献   

19.
Mutations of the human putative protein tyrosine phosphatase (PTEN/MMAC1) gene at chromosome 10q23 have been found frequently in type I endometrial carcinomas. Endometrioid adenocarcinoma is the most frequent histology seen in patients with clinically determined synchronous endometrial and ovarian carcinomas. We report a high incidence of PTEN/MMAC1 mutations and 10q23 loss of heterozygosity (LOH) in patients with synchronous endometrial and ovarian carcinomas. Paraffin-embedded precision microdissected tumors were analyzed for 10 matched synchronous endometrial and ovarian cancers and 11 matched control metastatic endometrial cancers. Single-stranded conformation polymorphism analysis was used to screen for mutations in all tumors and corresponding normal lymphocyte DNA. LOH was determined using a panel of four microsatellite markers within the PTEN/MMAC1 locus. PTEN/MMAC1 mutations were found in 43% (9 of 21) of the endometrial cancers studied, similarly represented in the clinically synchronous group (5 of 10 or 50%) and the advanced metastatic group (4 of 11; 36%; P = 0.53). In two of the five cases of clinically synchronous cancers, identical or progressive PTEN mutations were found in both the endometrial and ovarian cancers, suggesting that the ovarian tumor is a metastasis from the endometrial primary. PTEN/MMAC1 mutations in the advanced endometrial cancers were similar in the corresponding metastases. In one case, the mutation was seen in only one of two metastatic lymph nodes. The LOH analysis demonstrated 55% LOH in at least one PTEN/MMAC1 marker. These findings suggest that the putative tumor suppressor gene PTEN/MMAC1 may be a viable molecular marker to differentiate synchronous versus metastatic disease in a subset of clinically synchronous endometrial and ovarian carcinomas.  相似文献   

20.
The tuberous sclerosis 2 (TSC2) gene is thought to function as a growth suppressor in sporadic and TSC-associated hamartomas and tumors. Clusters of dysplastic glial cells are a common feature of cortical tubers and subependymal nodules in tuberous sclerosis patients. In an effort to identify TSC2 gene alterations in sporadic gliomas, we detected a novel polymorphism adjacent to the 3'splice site of intron 4. We evaluated the distribution of this variant allele in a series of 244 patients with glial tumors, including 55 gangliogliomas, 31 pilocytic astrocytomas (WHO grade I), 50 astrocytomas (WHO grades II and III), and 108 glioblastomas (WHO grade IV). The allelic distribution in the general population was estimated by examining 381 healthy blood donors. This rare allele appeared in the control population and in the patients with astrocytic gliomas with a virtually identical frequency (8.14%, and 8.20%, respectively). The frequency of the rare allele in gangliogliomas, however, was significantly higher (15.5%; p = 0.024). The fact that both gangliogliomas and cortical tubers in tuberous sclerosis contain neuronal and astrocytic elements and may resemble each other histologically suggests that the TSC2 gene may be involved in the development of these tumors. The rare allele of the TSC2 gene emerges as a candidate for a predisposing factor for the formation of sporadic gangliogliomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号