首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
在70℃的死亡绿液中,对316不锈钢以及超级不锈钢904L,254sMo和2507的人造缝隙电极进行了循环伏安测试和腐蚀形貌观察。结果表明,在70℃的死亡绿液中,254sMo和2507不锈钢具有良好的耐缝隙腐蚀能力,316和904L不锈钢的缝隙腐蚀损伤均十分严重。在缝隙边缘,316和904L不锈钢均呈现"蕾丝盖"结构,254sMo和2507不锈钢未见该腐蚀形貌。在缝隙腐蚀坑底部,超级双相不锈钢2507呈现电偶腐蚀的形貌特征。  相似文献   

2.
采用电化学阻抗谱(EIS)、动电位极化曲线、循环极化曲线(CP)研究了316L,2205,254SMo和2507不锈钢在含不同浓度Cl-的高炉煤气管道冷凝模拟液中的腐蚀行为。结果表明,随着Cl-浓度的增加,该四种不锈钢电极的电荷转移电阻均逐渐减小,其中2507不锈钢电极的电荷转移电阻最大,其次为254SMo不锈钢,而316L不锈钢的最小。316L不锈钢电极的极化曲线没有钝化区,腐蚀电流密度较大;254SMo和2507不锈钢电极的极化曲线存在明显的钝化区,显示较好的耐蚀性。254SMo和2507不锈钢电极的循环极化曲线中的折回段几乎沿原曲线逆向变化,显示其表面钝化膜破坏后的修复能力强;2205不锈钢回扫电流始终大于正扫电流,其钝化膜修复能力相对较差。  相似文献   

3.
Susceptibility and morphological characteristics of crevice corrosion for SS316, SS904 L, SS254 sMo and SS2507 in the simulated low-temperature multi-effect distillation environment were investigated by cyclic polarization test, scanning electron microscope and laser microscope. The results show that the crevice corrosion resistance of four kinds of stainless steel is ranked as SS254 sMo ≈ SS2507SS316 SS904 L. There are ‘‘cover' structures over the edge of active crevice corrosion regions of SS904 L, SS254 sMo and SS2507, but SS316 is an exception. Galvanic corrosion characteristics appeared in the crevice of duplex supper stainless steel SS2507.  相似文献   

4.
温度对316L不锈钢耐海水腐蚀性能的影响   总被引:1,自引:0,他引:1  
运用临界点蚀温度(CPT)、环状阳极极化曲线和电化学阻抗谱等方法研究了不同温度下316L不锈钢的海水腐蚀行为. 结果表明, 晶粒尺寸不同的两种316L不锈钢的CPT基本相同; 随着海水温度升高, 点蚀电位和再钝化电位均呈线性降低, 但是细晶钢的点蚀性能下降更大, 85℃时粗晶钢比细晶钢的点蚀电位约高60 mV. 与粗晶钢相比, 细晶钢在65℃下形成的钝化膜微缺陷更多, 且点蚀诱导时间较短.  相似文献   

5.
目的研究外加电位对316L奥氏体不锈钢点蚀和再钝化行为的影响。方法采用循环极化、恒电位极化,电化学阻抗谱(EIS)等多种电化学测试方法,研究了系列电位与混合电位对316L奥氏体不锈钢点蚀敏感性的影响,并采用扫描电子显微镜(SEM)、X射线光电子能谱(XPS)观察分析钝化膜点蚀形貌和元素含量。结果在60℃的饱和CO_2的10 g/L NaCl溶液中,316L奥氏体不锈钢的钝化区间为-0.394~0.168 V,但电位在-0.100~0.168V之间,即亚稳态点蚀区时,电流出现一定的波动。在钝化区极化时,316L奥氏体不锈钢的稳态电流密度非常低,随外加电位的升高而略有增加,极化后试样表面无点蚀;在亚稳态点蚀区,极化的电流密度较高,极化后,试样表面出现明显的点蚀坑;混合区极化时,电位从0.1 V转换到-0.1 V时,电流密度急剧下降,并稳定在一个较低的电流值。XPS结果表明,在钝化区电位极化后,Cr、Mo元素含量有所升高,而Fe元素发生了选择性溶解。结论 Cr、Mo元素是耐蚀性元素,其氧化物或氢氧化物的存在可促进钝化膜的局部修复,因此电位转换到低电位后,试样表面发生再钝化现象,钝化膜的稳定性增强,材料的耐蚀能力提高。  相似文献   

6.
通过腐蚀模拟试验和电化学测试,研究了H2S分压对316L不锈钢在含Cl-条件下的点蚀行为。模拟试验结果表明,随H2S分压的升高,316L不锈钢试样表面钝化膜局部出现破损,点蚀电位及钝化膜电阻均明显下降,点蚀敏感性提高。H2S分压增至100kPa时,样品表面可以观察到明显点蚀形核,与无H2S条件相比,膜电阻显著减小,难以维持良好的钝化状态。  相似文献   

7.
在外加恒电位下,通过测腐蚀电流密度-温度曲线的方法研究了Cl~-含量对316L不锈钢临界点蚀温度(CPT)的影响。结果表明:在临界点蚀温度以下,试样表面钝化膜比较稳定,超过该温度后,试样表面开始发生点蚀。Cl~-含量越高,316L不锈钢临界点蚀温度越低,且表面的点蚀坑越多。现场的腐蚀产物分析表明,腐蚀产物表面稀疏,主要元素为O、Fe、C、Cl。现场生产水Cl~-质量浓度高达21.431g/L,对316L不锈钢的腐蚀极其严重。  相似文献   

8.
海水温度和浓缩度对316L不锈钢点蚀性能的影响   总被引:3,自引:0,他引:3  
运用循环阳极极化曲线研究了不同温度和浓缩度的海水介质中316L不锈钢的点蚀行为.结果表明,在1~3倍浓缩度范围内,316L不锈钢的点蚀电位和再钝化电位均随着温度的升高而线性降低,但当浓缩度高于2倍、温度大于85℃时,点蚀电位变化较小;在25~95℃温度范围内,点蚀电位和再钝化电位与海水浓缩度的对数呈线性关系.浓缩度对316L不锈钢点蚀性能的影响比温度更小,并根据点缺陷理论分析了二者对点蚀的作用机制.  相似文献   

9.
不锈钢钝化膜形成和破坏过程的原位ECSTM研究   总被引:5,自引:0,他引:5  
利用电化学扫描隧道显微镜(ECSTM),原位研究不同电位下不锈钢在0.5M H2SO4+0.02M NaCl溶液中表面形貌的动态行为,并讨论电位对不锈钢电化学阻抗谱(EIS)的影响。结果表明:不锈钢在活化-钝化过渡区电位表面粗糙度最大;进入钝化区内,在钝化膜完整处,电位越高,表面粗糙度越小,钝化膜呈有序生长。在钝化膜薄弱处,电位控制在0.2V时,钝化膜最为完整。在0.5V时,表面微点蚀坑开始萌生。电位为0.8V时, 已有的微点蚀坑有所生长。不锈钢表面ECSTM形貌与电化学阻抗谱测量呈对应关系;电位为0.2V时,表面钝化膜最为完整,阻抗最大;电位为0.5V时,在钝化膜薄弱处萌生点蚀坑,钝化膜阻抗有所下降;电位为0.8V时,钝化膜完整处得到明显的整平,阻抗相比0.5V时明显提高,但由于已萌生的微点蚀坑开始生长,阻抗相比0.2V时仍有所降低。  相似文献   

10.
采用动电位极化、恒电位极化、Mott-Schottky以及XPS测试研究了254SMo、904L、316L 3种奥氏体不锈钢在模拟烟气冷凝液中的钝化行为。结果表明,在模拟烟气冷凝液中,随着Mo含量的增加,钝化区变宽,点蚀电位变正,维钝电流密度降低,使得254SMo钢耐蚀性增强,适用于烟气脱硫环境中。同时,随着冷凝液pH的增大,3种钢的平带电位负移,施主密度不断减小,表明其钝化膜的缺陷随着pH的增加而减少,耐蚀性增加。  相似文献   

11.
邹洋  刘希武  李辉 《腐蚀与防护》2022,(6):62-66+102
针对某厂精对苯二甲酸(PTA)生产装置氧化单元设备的腐蚀问题,在高温高压反应釜中进行了浸泡腐蚀试验,研究了温度对有氧和无氧条件下316L、317L和904L不锈钢在含Br-醋酸溶液中耐蚀性的影响,采用电化学测试、体视显微镜和扫描电镜等方法,分析了3种材料的电化学特征及表面腐蚀形貌。结果表明:随着温度的升高,3种材料的腐蚀速率均逐渐增大,且其在有氧条件下的腐蚀速率比无氧条件下的大,3种材料的耐蚀性按从高到低的顺序依次为904L不锈钢、317L不锈钢和316L不锈钢;当温度为60℃时,3种材料的腐蚀程度均较轻,其表面均保持金属光泽,无明显腐蚀痕迹;随着温度的继续升高,材料表面的腐蚀程度加剧;当温度低于60℃时,3种材料均发生了点蚀,其点蚀电位按从低到高的顺序依次为316L不锈钢、317L不锈钢和904L不锈钢。  相似文献   

12.
采用多种电化学实验手段及场发射扫描电子显微镜(FESEM)、激光共聚焦扫描显微镜(CLSM)等分析技术,结合活死细菌染色实验、点蚀坑深度分析等方法,以316L不锈钢为对比,研究了CrCoNi中熵合金在含铜绿假单胞菌培养基中的微生物腐蚀行为。结果表明:铜绿假单胞菌能够在CrCoNi中熵合金表面形成不均匀的生物被膜,从而降低开路电位,减小极化电阻和电荷转移电阻,增大腐蚀电流密度;铜绿假单胞菌生物被膜在一定程度上破坏了钝化膜,导致浸泡在含铜绿假单胞菌培养基中的CrCoNi中熵合金的最大点蚀坑深度(4.8μm)大于无菌培养基中CrCoNi中熵合金的最大点蚀坑深度(2.3μm)。与316L不锈钢相比,CrCoNi中熵合金的开路电位较高,腐蚀电流密度和腐蚀速率较小,钝化膜的修复能力较强,在含铜绿假单胞菌培养基中浸泡后的最大点蚀坑深度小于316L不锈钢(5.8μm)。  相似文献   

13.
通过对电化学噪声数据进行时域、频域和Weibull分布等分析,比较了高氮奥氏体不锈钢(HNSS)和316L不锈钢(316L SS)在6%(质量分数)FeCl_3溶液中的点蚀行为。时域分析结果表明,316L SS在溶液中浸泡5 h后,电位噪声和电流噪声均出现了噪声暂态峰,试样表面发生了亚稳态点蚀,而此时HNSS并没有出现明显的噪声暂态峰,电位噪声和电流噪声仅发生小幅高频波动,表面钝化膜虽发生轻微腐蚀,但仍具有一定的再钝化能力。316L SS的噪声电阻波动幅值较大,而HNSS噪声电阻幅值在小范围内波动,表面钝化膜的自钝化和修复能力优于316L SS。功率谱密度图像表明,316L SS的高频段斜率和白噪声水平强度均高于HNSS,且Weibull分布分析表明316L SS的点蚀孕育速率约是HNSS的2倍,316L SS更容易发生点蚀,HNSS的抗点蚀能力更强。  相似文献   

14.
目的研究真空度对2205双相不锈钢在海水淡化环境中耐点蚀性能的影响。方法在1.5倍人工浓缩海水中,采用循环阳极极化曲线与电化学阻抗谱等电化学方法,研究了2205双相不锈钢的点蚀和再钝化行为,并通过扫描电子显微镜对极化后试样的腐蚀形貌进行分析。结果测试了七种不同真空状态下2205双相不锈钢的循环阳极极化曲线和电化学阻抗谱,发现随着真空度的升高,试样的自腐蚀电位和点蚀电位均不断降低,分别约从-256 m V和605 m V下降到-485 m V和363 m V(均vs.SCE),点蚀倾向明显增大。同时,Nyquist曲线中的半圆弧逐渐变得扁平,Bode图中的相位角约从80°下降到77°,但是点蚀电位与再钝化电位之差逐渐升高。不同真空度下循环阳极极化后,试样表面的点蚀坑形貌不完全相同,蚀坑数量随着真空度的升高而明显减少,当真空度升高为0.72时,点蚀坑尺寸明显减小。结论随着真空度的逐渐升高,不锈钢钝化膜的致密性和保护性降低,电化学阻抗值逐渐减小,耐点蚀性能变差,但是再钝化性能却有所增强。循环阳极极化后试样的腐蚀程度减小。  相似文献   

15.
采用FeCl3溶液浸泡试验、动电位极化、电化学阻抗谱及体式显微镜研究了904L超级奥氏体不锈钢在不同温度下的点蚀行为。结果表明:溶液温度为25℃时,904L不锈钢具有优异的耐点蚀性能,随着溶液温度的升高,其耐点蚀性能下降,在65℃FeCl3溶液中基体表面产生严重的点蚀坑。在不同温度模拟海水溶液中的电化学测试结果同样表明:随着试验温度的提高,自腐蚀电流密度增大,点蚀电位下降,点蚀敏感性提高;EIS均为单一的容抗弧,温度升高,容抗弧半径减小,材料腐蚀速率增大,耐蚀性降低。  相似文献   

16.
通过电化学动电位扫描技术,采用正交试验法,研究了溴化锂(LiBr)吸收式热泵用管材316L不锈钢在热网水中的耐蚀性,建立了316L点蚀电位关于热网水温度、Cl-浓度和p H值三因素数学模型。通过腐蚀失重和电化学极化法进行了316L不锈钢在吸收器LiBr溶液中的点蚀性能研究。结果表明:温度与Cl-浓度对316L点蚀电位影响负相关,而p H值对其影响正相关,且各因素影响的显著程度为p H值温度Cl-浓度。吸收器条件下316L不锈钢的腐蚀速率仅为0.78μm/a,其表面点蚀坑多但较浅,且分布较均匀;但是316L点蚀电位Eb低于其氧平衡电位φ较多,点蚀仍可能发生。  相似文献   

17.
采用动电位极化扫描、电化学阻抗谱等方法研究在地下咸水不同电导率、p H值和流速条件下,B30铜镍合金和316L不锈钢的腐蚀行为。结果表明:随着地下咸水电导率的增加,B30铜镍合金自腐蚀电流密度迅速增加,点蚀敏感性增大,而316L不锈钢自腐蚀电流密度的增加较缓慢,耐蚀性明显优于B30铜镍合金。在酸性溶液中,B30铜镍合金发生均匀腐蚀。随着p H值的增大,B30铜镍合金点蚀倾向增大,316L不锈钢点蚀倾向减小。流速为1 m/s的冲刷腐蚀条件可以破坏B30铜镍合金钝化膜的形成,而不影响316L不锈钢钝化膜的稳定性。这为热泵系统如何选择金属材料提供了参考。  相似文献   

18.
基于自行设计组装的盐酸液膜腐蚀模拟装置,采用腐蚀挂片、电阻探针、Tafel极化、电化学阻抗等方法,研究了316L和HR-2不锈钢在浓度分别为1、0.5和0.1 mol/L,温度分别为90、70和60℃的盐酸蒸汽环境中的钝化和点蚀行为,并利用金相显微镜、XRD对腐蚀试样和腐蚀产物进行了分析。结果表明:两种不锈钢的腐蚀速率随时间先加快后减慢最后趋于稳定,316L不锈钢的腐蚀速率相对较高;两种不锈钢均能形成稳定钝化区,且维钝电流密度相差不大,HR-2孔蚀电位的钝化区间总体都比316L不锈钢高,说明HR-2不锈钢更耐腐蚀;另外,两种不锈钢表面腐蚀产物成分基本相同,316L不锈钢表面的腐蚀产物更多更密集,这是由于O的吸附被C1-所取代,钢体表面上的钝化膜难以形成或破坏,并且更可能导致不锈钢点蚀。  相似文献   

19.
为了研究2507双相不锈钢在海水脱硫环境中的耐腐蚀性能,利用开路电位、电化学阻抗谱、动电位极化法、恒电位极化法、Mott-Schottky曲线和扫描电镜等研究了2507双相不锈钢在海水脱硫环境中的腐蚀行为。结果表明:2507双相不锈钢在海水脱硫环境中的腐蚀形式为点蚀。随着NaHSO3浓度的增大,2507双相不锈钢的开路电位、自腐蚀电位Ecorr和点蚀击穿电位Eb负移,钝化膜电阻Rct减小,腐蚀电流密度Icorr增大,耐腐蚀性能下降。HSO-3与Cl-的竞争吸附对点蚀具有协同促进作用,HSO-3参与钝化膜的钝化过程并形成金属硫酸盐,钝化膜点缺陷密度增大,载流子密度增大,导电性提高,钝化膜屏蔽作用下降。  相似文献   

20.
采用化学浸泡实验研究了6%FeCl_3+1%HCl混合溶液中温度与浸泡时间对2205双相不锈钢点蚀行为的影响,并分析2205双相不锈钢在含Cl~-环境下点蚀机理。通过高分辨相机与激光共聚焦显微镜及X射线光电子能谱(XPS)观察并分析样品表面形貌及钝化膜成分,采用电化学手段及原子力显微镜分析模拟海水溶液中温度对2205不锈钢耐腐蚀性能的影响。结果表明:2205双相不锈钢的临界点蚀温度(CPT)在45℃左右,当温度低于45℃时,延长浸泡时间样品表面未出现明显点蚀;温度高于45℃时,随浸泡时间延长点蚀在样品表面随机萌生并长大扩展,55℃时点蚀坑尺寸达到500μm。随着温度的升高,样品钝化区间缩短,点蚀电位显著降低,由30℃时的0.74 V降低到60℃时的0.27 V。XPS结果显示,随温度增加,样品钝化膜稳定性增加,表现为金属稳定氧化物及氢氧化物的含量增加。样品阻抗值的大小随温度的升高不断减小,在30℃时样品阻抗值为5.066×10~5Ω·cm~2,温度升高到60℃阻抗值减小到1.814×10~5Ω·cm~2。随着温度的逐渐升高,2205不锈钢腐蚀速率增大,电化学阻抗值减小,钝化膜的保护能力下降,耐点蚀性能变差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号