首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 73 毫秒
1.
为研究天津市居民住宅内PM_(2.5)浓度及其影响因素,监测天津市4个家庭室内PM_(2.5)浓度,分析室内人员活动、烹饪行为和空气净化器对室内PM_(2.5)浓度的影响。结果表明:随人员活动增加,室内PM_(2.5)浓度逐渐增大;烹饪时平均浓度是烹饪之前浓度的3倍左右;使用空气净化器能使室内PM_(2.5)浓度减少58%左右。  相似文献   

2.
细颗粒物PM_(2.5)浓度测量及计量技术   总被引:1,自引:0,他引:1  
介绍细颗粒物PM2.5浓度测量、测量仪器的量值溯源方法和标准装置、切割头切割特性的检测方法,以及检测用标准粒子的制备;研制PM2.5采样器切割头检测装置,制备粒径范围在1.04.0μmm的用于PM2.5采样器切割头切割特性检测的系列标准粒子,对可吸入颗粒物测量仪量值传递方法和准确性检验方法进行研究。通过本研究工作,可以建立PM2.5测量的参考方法,实现对PM2.5测量结果的准确溯源,使得PM2.5的检测数据可溯源至质量标准。  相似文献   

3.
2010年4月在西安市区4个点使用低流量采样器同步连续采集2周(24 h/d)细颗粒物PM2.5和可吸入颗粒物PM10样品,分别利用热光碳分析仪、离子色谱和X射线荧光光谱仪分析其含碳组分(有机碳和元素碳)、水溶性无机离子(NH4+、Na+、K+、Ca2+、Mg2+、F-、Cl-、SO42-、NO3-)和元素Ca、Fe等浓度。结果表明,沙尘暴期间,PM10的质量浓度是PM2.5的3倍,PM2.5和PM10中有机碳浓度大于正常天气的,SO42--NO3--NH4+浓度急剧减小,明显小于正常天气,这与干燥沙尘暴的稀释作用有关;后向轨迹、气溶胶指数和Ca与Fe元素质量浓度比验证了沙尘暴颗粒来源西部戈壁沙尘和黄土高原;阴阳离子平衡计算显示沙尘事件颗粒物呈碱性,阴阳离子差异估算的CO32-含量与Ca2+具有强相关性,表明沙尘暴颗粒以CaCO3为主。  相似文献   

4.
陕西省榆林市冬季PM_(10)和PM_(2.5)的污染特征   总被引:1,自引:0,他引:1  
《中国粉体技术》2015,(3):84-88
为了探讨陕西省榆林市冬季大气颗粒物的污染特征,2013年11月对榆林市3个采样点进行可吸入颗粒物(PM10)和细颗粒物(PM2.5)同步观测,利用离子色谱法和热光分析法测定PM10和PM2.5中无机水溶性离子和碳组分的浓度。结果表明:3个采样点PM10和PM2.5日均质量浓度分别为162、74μg/m3,颗粒物浓度由大到小的采样点为环保旧站、实验中学和环保大厦;PM10中有机碳和元素碳的质量浓度空间分布与颗粒物的相同;PM2.5中有碳组分在环保旧站和实验中学的浓度接近,都大于环保大厦的;无机离子中SO42-和Ca2+浓度最大;PM10与PM2.5整体偏碱性,亏损的阴离子主要是CO32-;扬尘在PM10中的比例远远大于其他组分;PM2.5中碳组分含量较大,其次是土壤尘、硫酸盐、氯化物和硝酸盐等;治理PM10和PM2.5污染应以加强扬尘控制和减少燃煤污染物排放为主。  相似文献   

5.
较高负压烟气环境下PM_(2.5)测试技术研究   总被引:1,自引:0,他引:1  
《中国粉体技术》2017,(2):79-83
通过分析ELPI(静电低压撞击器,10 L/min)配套稀释器的工作原理,提出适用于负压烟气环境的科学合理的工程细颗粒物(PM_(2.5))测试方法,稀释器排气口等压处理,提高稀释空气的压力,并通过现场测试,探讨测试方法的合理性。在较低负压环境下,2种方法均可满足要求;当采样烟气负压达到-7 000Pa左右时,200 kPa稀释器随着采样环境压力的波动稀释比会有较明显的变化,-17 000 Pa时,300 kPa的稀释器也不再适用;对于较高负压环境,建议开发更大压力的稀释器,进一步扩大ELPI的适用范围。  相似文献   

6.
为评价环境湿度变化对TEOM?1400a系列环境颗粒物监测仪进行PM10观测的影响,在2004年1月到2005年1月的观测过程中,获得了30min平均的大气PM10质量浓度,并观测了地面气象条件及降水过程中仪器的响应。结果表明,湿度变化较大时仪器记录的PM10浓度明显受到滤膜上吸附的水汽含量变化的影响。仪器提供的PM10质量浓度反映出明显的日变化规律,分别在8:00~9:30和18:00~23:00出现峰值而在12:00~15:30出现谷值;此变化规律反映了大气污染物的日变化特征,但也受到空气湿度变化的影响。应用该仪器时对空气湿度的影响应当予以考虑。  相似文献   

7.
《中国粉体技术》2015,(2):16-20
采用微波消解-电感耦合等离子体质谱法及电感耦合等离子体发射光谱法测定2010—2011年杭州市3条典型道路两侧代表秋、冬、春、夏4个季节的细颗粒物PM2.5中22种元素的质量浓度,分析其时空分布规律、特征及来源。结果表明:道路两侧PM2.5中元素含量与道路类型关系不大,呈现夏季小、其余季节大的态势,主要污染元素为Zn、Pb、Cu、Ni;受机动车排放的影响,道路两侧PM2.5呈无机元素含量小、有机元素含量大的特征;Fe、K、Mg、Na、P、Si等土壤元素主要来自机动车行驶引起的道路扬尘;机动车污染特征元素Pb、Zn、Cu、Cd来自相同人为源;机动车污染是道路两侧土壤和灰尘中重金属的主要来源;随着机动车保有量的持续增长,道路两侧PM2.5中Pb仍维持着较高的富集水平。  相似文献   

8.
环境空气PM_(2.5)监测技术及其可比性研究进展   总被引:4,自引:0,他引:4  
随着我国PM2.5国家标准的颁布,PM2.5的科学监测对了解和评价环境空气质量显得尤为重要。由于PM2.5的组成复杂多变、各种检测技术原理及特点各异,PM2.5的准确监测及其方法的规范化成为环境空气质量管理的基础和关键。该文重点评述PM2.5监测的研究进展及监测技术,介绍β射线法、振荡天平法、光散射法及目前国内外开展不同方法比对研究的最新进展,探讨适合我国国情的PM2.5监测设备及技术,为制定相应的标准方法及规范提供技术支持。  相似文献   

9.
《中国粉体技术》2016,(2):104-107
为了研究燃煤与垃圾焚烧飞灰中细颗粒物PM_(2.5)所含重金属元素Cu、Zn、Ni、Cr、Pb和Sn的分布特征及潜在风险,利用再悬浮技术采集样品,采用等离子体发射光谱仪与石墨炉检测样品中重金属元素的含量,分别利用富集因子与Hakanson潜在风险指数进行风险评价。结果表明:燃煤飞灰中PM_(2.5)的重金属元素按含量由大到小的顺序为Zn、Pb、Cr、Cu、Ni、Sn,垃圾焚烧飞灰中PM_(2.5)的重金属元素按含量由大到小的顺序为Zn、Pb、Cr、Cu、Sn、Ni;垃圾焚烧过程中的重金属元素富集程度高于燃煤焚烧过程中的;燃煤飞灰中PM_(2.5)的重金属元素含量相对较小,潜在风险较低;垃圾焚烧飞灰中PM_(2.5)的重金属元素含量非常大,潜在风险极高。  相似文献   

10.
《中国粉体技术》2017,(5):43-48
遵循电力行业标准DL/T 1520—2016,采用PM-10撞击器(30 L/min)、质量法撞击器(DGI,70 L/min)、静电低压撞击器(ELPI,10 L/min)对燃煤电厂的PM_(2.5)进行现场对比测试;并对燃煤电厂PM_(2.5)排放特征进行总结。结果表明,同一仪器不同时段的数据及不同仪器相同时间的数据重复性均较好。  相似文献   

11.
于2015年3月-2016年1月在福州市八个点位采集春夏秋冬四个季节的大气细颗粒物PM2.5样品,共861个,采用热光反射法测定了PM2.5中的含碳物质OC、EC,探讨OC、EC的浓度水平、季节变化、相关性、OC/EC的比值以及二次有机碳(SOC)的分布特征。结果表明,福州市大气PM2.5中OC的浓度范围为(6.2~10.8)μg/m3,EC的浓度范围为(2.0~4.1)μg/m3,总碳TC在PM2.5中所占的比例范围为(28.7~34.6)%。各点位中OC、EC的季节变化特征为春>冬>秋>夏。OC/EC的比值均大于2.0左右,说明各点位PM2.5中存在二次有机碳。运用OC/EC最小比值法对SOC的含量进行估算,SOC年平均浓度为3.8μg/m3,占OC含量的46.8%。SOC对PM2.5的贡献率春、冬季比夏、秋季高,这可能与夏季温度高、光照强烈有利于光化学反应进行有关。夏、秋、冬三个季节OC与EC的相关性较好,春季OC与EC的相关性差,说明夏秋冬三季节OC与EC的来源相同,春季OC与EC来源相对复杂。OC和EC中不同温度段的碳组分构成和TC与K+的相关性分析表明汽油车尾气排放、燃煤排放、生物质燃烧是福州大气碳质组分的主要来源。  相似文献   

12.
分析了武汉地区武大和天虹2个采样点秋季灰霾和非灰霾天气细颗粒物PM2.5中的9种水溶性离子(F-、Cl-、NO3-、SO42-、Na+、NH4+、K+、Mg2+、Ca2+)浓度。结果表明,NO3-、SO42-和NH4+是武汉秋季PM2.5中最重要的3种水溶性离子,且PM2.5中各水溶性离子之间组成比例相对稳定;灰霾期PM2.5中水溶性离子比例的增大是武汉秋季灰霾污染的重要特征,它们可能来源于生物质燃烧、土壤扬尘、化石燃料燃烧、汽车尾气排放等过程,其中天虹站点的大气二次污染比武大站点的严重,固定源对武汉2个站点秋季灰霾期大气中NOx与SO2相对贡献均比非灰霾期的大,移动源对天虹站点秋季大气中NOx与SO2的相对贡献则比武大站点的大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号