首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 468 毫秒
1.
以乙烯基树脂(VE)为基体,竹纤维(BF)为增强材料,通过偶联剂KH602对纳米SiO2进行改性处理,并利用改性后纳米SiO2分别对竹纤维和树脂进行改性处理,采用真空辅助树脂传递模塑成型工艺(VARTM)制备了BF/VE复合材料。采用FTIR、SEM对改性后纤维和树脂的表面物理化学状态进行表征,结果表明:改性纳米SiO2成功化学接枝到竹纤维表面且分散到树脂基体中,改性纳米SiO2在BF1/VE0.5 (用1.0wt%改性纳米SiO2改性纤维和0.5wt%改性纳米SiO2改性树脂)复合材料中分散更为均匀;采用力学试验机和SEM对复合材料力学、断口和表面形貌进行分析,考察改性纳米SiO2的添加量对BF/VE复合材料力学性能、界面性能的影响。结果表明:BF1/VE0.5复合材料的拉伸、弯曲及冲击强度分别达到最大值49.0 MPa、70.6 MPa和150.4 J/m,与未处理的复合材料相比分别提高了18.9%、26.1%、70.7%。此外,还初步探讨了改性纳米SiO2的界面增强机制。   相似文献   

2.
微纳米SiO2/PP复合材料增强增韧的实验研究   总被引:1,自引:0,他引:1  
为了研究无机刚性颗粒对通用塑料聚丙烯 (PP) 的力学性能的影响, 采用熔融共混方法制备了经硅烷偶联剂A-151处理的SiO2/PP 复合材料, 并通过其缺口冲击、 拉伸、 弯曲试验和冲击断面的形貌观察, 分析研究了微纳米SiO2颗粒大小、 填充量、 表面改性以及不同颗粒大小SiO2混合物对PP复合材料增韧、 增强效果的影响。实验结果表明: 纳米SiO2的加入可以同时改善其韧性、 刚性和强度; 填充量相同, 颗粒越细, SiO2/PP复合材料的力学性能越好。SiO2经改性后填充到PP基体中, 明显改善了颗粒在基体中的分散性及基体与颗粒之间界面结合性能, 使复合材料的综合力学性能得到提高。不同颗粒大小的SiO2混合后填充到PP基体中, 混合SiO2的协同效应使复合材料拉伸、 弯曲性能进一步提高, 对PP基体具有更好的增强效果, 但其冲击性能下降。   相似文献   

3.
SiO2/低密度聚乙烯(LDPE)复合材料的介电性能与纳米SiO2在LDPE基体中的分散性密切相关。为研究室温下拉伸处理对纳米SiO2颗粒在LDPE基体中分散性的作用机制,本文选取7 nm粒径的疏水型纳米SiO2与LDPE熔融共混制备SiO2/LDPE纳米复合材料。将制备好的纳米复合材料经过三次拉伸处理,利用SEM、DSC表征纳米粒子的分散性及复合材料的结晶度,利用热刺激电流法(TSC)测试分析复合材料的陷阱能级和陷阱密度。通过对纳米复合材料的空间电荷,电导电流,直流击穿强度进行实验测试,研究了拉伸对纳米粒子分散性的影响及其所导致的直流介电性能的改变。结果表明室温下拉伸有助于纳米粒子的分散,使纳米SiO2粒子的团聚尺寸从200 nm左右缩减到100 nm左右;但拉伸会破坏LDPE的结晶结构,劣化其性能;通过掺杂纳米SiO2引入深陷阱能级可以改善LDPE的直流介电性能。经过拉伸的SiO2/LDPE的空间电荷积累得到...  相似文献   

4.
为改善双马来酰亚胺树脂(BMI)脆性过大、耐热性不足的缺点,以末端含有氨基的纳米SiO2(SiO2-NH2)为原料,通过溶剂法制备出结构中含有SiO2的苯并噁嗪树脂单体(SiO2-BOZ),作为改性体系加入到BMI中进行共混,制备出一种耐热性能、韧性良好的新型SiO2-BOZ/BMI树脂材料,并详细研究了SiO2-NH2的添加对BMI固化反应动力学的影响。结果表明,当SiO2-BOZ添加量达到15.0wt%时,SiO2-BOZ/BMI树脂复合材料的表观活化能较纯BMI树脂得到了一定程度的降低,SiO2-BOZ/BMI的弯曲强度达到最大值166.12 MPa,较纯BMI 增加了32.3%,且具有比BMI更好的耐热性能。   相似文献   

5.
SiO2 / 氰酸酯纳米复合材料的力学性能和热性能   总被引:13,自引:0,他引:13       下载免费PDF全文
采用高速均质剪切法制备了SiO2 / 氰酸酯(CE) 纳米复合材料, 并对该体系的静态力学性能、动态力学性能和热稳定性进行了研究。结果表明, 纳米SiO2的加入提高了复合材料的冲击强度和弯曲强度。当SiO2 含量为0. 30 wt %时, 复合材料的冲击强度达最大, 增幅为88. 9 %; 当SiO2含量为0. 15 wt %时, 材料的弯曲强度达最大, 增幅为2010 %。复合材料的储能模量和高温损耗模量较纯CE 树脂有明显提高, 玻璃化转变温度比纯CE 提高了31. 2 ℃, 热分解温度在SiO2含量为0. 30 wt %时达最大, 失重为10 %时的热分解温度提高了25. 7 ℃。   相似文献   

6.
采用SiO2中空微球对含硅芳炔树脂(PSAC)进行改性,制备了SiO2/PSAC复合材料,以改善PSAC固化后质脆的缺点,提高PSAC基复合材料的力学性能,拓展PSAC在航空航天领域的应用。对SiO2/PSAC复合材料和石英纤维布增强SiO2/PSAC(QF-SiO2/PSAC)复合材料的结构与性能进行了研究,采用SEM分析SiO2/PSAC树脂浇铸体和QF-SiO2/PSAC复合材料断面微观结构,并分析SiO2的增韧机制。采用DMA和TGA分析了SiO2/PSAC复合材料耐热性能和热稳定性,虽然SiO2会导致树脂耐热性能略有下降,但其中空结构使树脂具有优异介电性能。当SiO2的添加量达2wt%时,SiO2/PSAC树脂浇铸体弯曲强度达22.3 MPa,失重5%温度为551℃,1 000℃残留率为86.5%;QF-2SiO2/PSAC复合材料的弯曲强度为298.3 MPa,弯曲模量达31.0 GPa,分别提高了27.5%、59.0%;当SiO2添加量为5wt%时,QF-5SiO2/PSAC复合材料的剪切强度提高了16.0%。   相似文献   

7.
以低密度聚乙烯(LDPE)为聚合物基体,通过熔融共混的方式填充不同粒径的纳米SiO2无机颗粒,制备纳米SiO2/LDPE复合材料,研究提高聚乙烯电绝缘性能的纳米改性方法和机制。利用SEM表征纳米SiO2在LDPE基体中的微观形态和分散程度,采用DSC和偏光显微镜(PLM)分析纳米SiO2对LDPE基体结晶度和结晶形态的影响,通过热刺激电流法(TSC)分析纳米SiO2/LDPE复合材料的陷阱密度和陷阱能级,并结合电击穿的Weibull分布研究纳米复合材料的击穿机制。研究结果表明:纳米SiO2填充可以改变复合材料结晶度,进而增加LDPE基体本征结构缺陷和陷阱密度,同时填充纳米SiO2颗粒可引入比LDPE基体本征陷阱更深的陷阱能级,纳米SiO2填充颗粒引入的陷阱能级深度随着复合材料结晶度的增加而先增大后减小,填充浓度3wt%时可最有效地通过俘获载流子而抑制电击穿过程,纳米SiO2/LDPE复合材料的击穿场强达到最高值。与60 nm SiO2颗粒相比,30 nm SiO2填充颗粒具有更高的比表面积,界面电极化导致更高的介电常数,更高密度的纳米界面深陷阱态对于提高电击穿场强更有效。当填充浓度为5wt%时,纳米颗粒的团聚作用导致纳米复合材料的击穿强度降低。基于电双层理论提出了电子捕捉模型和界面结构模型,合理阐释了纳米SiO2/LDPE复合材料的微观陷阱特性及宏观电击穿机制。   相似文献   

8.
纤维增强聚合物复合材料的压缩性能与聚合物基体力学性质密切相关。本文利用连续碳纤维(CF)和含有均匀分散的SiO2纳米颗粒改性的环氧树脂基体,制备了CF-nano SiO2/Epoxy微纳米多相复合材料单向层合板,并对其轴向压缩性能进行了系统的研究。试验表明,将纳米颗粒引入基体能够有效提高纤维增强聚合物基复合材料的压缩强度,占nano SiO2/Epoxy体积为8.7%的纳米颗粒可将复合材料的压缩强度提升约62.7%。基于单向层合板的弹塑性微屈曲模型对纳米颗粒的增强效应进行了理论分析。根据含纳米颗粒的环氧树脂在压缩过程中的损伤行为,提出了一套基于加卸载试验建立纳米复合材料基体压缩本构关系的方法。将模型获得的基体本构关系与经典复合材料弹塑性微屈曲模型耦合,能够较为准确地预测本研究制备的微纳米多相复合材料的压缩强度。经试验检验,预测结果与实测数值达到很好的一致性。   相似文献   

9.
为提高纳米SiO2在硅橡胶(SR)基体中的分散性及两相间的界面结合力,设计以羟基硅油(HSO)和γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)为纳米SiO2的表面封端改性剂,并将改性SiO2与双组份加成型液体SR复合得到改性纳米SiO2/SR复合材料。通过一系列表征手段对改性纳米SiO2的形貌结构及其在乙醇中的分散性等进行分析,研究了改性纳米SiO2对纳米SiO2/SR复合材料的断面形貌、力学性能及热稳定性的影响。结果表明:KH570成功接枝到纳米SiO2表面并与SR基体间形成化学键。当HSO协同KH570改性纳米SiO2时,可有效改善纳米SiO2在SR基体中的分散性能及纳米SiO2与SR两相间的界面结合性能,并显著提高纳米SiO2/SR复合材料的力学性能和热稳定性。将SiO2∶HSO∶KH570以质量比为2.0∶0.2∶0.6处理的改性纳米SiO2粒子,得到的改性纳米SiO2/SR复合材料起始热分解温度提高了230℃。当SiO2∶HSO∶KH570质量比为2.0∶0.2∶0.45时,改性纳米SiO2/SR复合材料的拉伸强度和断裂伸长率分别提高了约1倍。   相似文献   

10.
利用同向平行双螺杆挤出机对纳米SiO2/低密度聚乙烯(LDPE)复合材料进行深度混炼,采用SEM、直流击穿强度试验及变温空间电荷试验研究了该工艺对纳米SiO2/LDPE复合体系中纳米SiO2颗粒分散性、直流击穿强度和空间电荷特性的影响,综合评估了纳米SiO2颗粒分散性改善和纳米SiO2/LDPE复合材料熔融状态下机械剪切降解对电性能的影响。结果表明,随着混炼次数的增加,纳米SiO2颗粒在LDPE中分散的更加均匀;深度混炼与单次混炼相比,SiO2/低密度聚乙烯复合材料直流击穿强度上升,室温下达到433.1 kV/mm;随着混炼次数的增加,SiO2/低密度聚乙烯复合材料低温时抑制空间电荷能力变强,但60℃以上高温时抑制能力变差。混炼次数的增加改善了纳米SiO2颗粒的分散性,使其与LDPE基体的界面增多,同时,纳米SiO2颗粒还使SiO2/低密度聚乙烯复合材料的片晶厚度增大,结晶度升高,界面区和力学性能都随着分散性改善而增加和增强,两者共同促进了SiO2/低密度聚乙烯复合材料电学性能的改善。但是由于深度混炼引发了材料降解,结构缺陷的增多影响了纳米SiO2/LDPE复合材料高温区的空间电荷抑制性能。  相似文献   

11.
采用空气辅助干法共混、冷压烧结并车削成膜的方法制备了SiO2填充量为35wt%、厚度为50 μm的聚四氟乙烯(PTFE)基复合薄膜。系统研究了SiO2颗粒粒径对SiO2/PTFE薄膜复合材料的孔洞缺陷和力学性能等的影响,并研究了SiO2在PTFE中的分散情况及分子间相互作用对其性能变化的影响机制。结果表明,随SiO2粒径的逐渐增大,其在PTFE中的分散趋于均匀,同时PTFE能更好地包覆粒子,因此SiO2/PTFE薄膜孔洞缺陷逐渐减少,力学性能逐渐增强;当SiO2的粒径D50为12 μm时,其在PTFE中的分散均匀性最佳,SiO2/PTFE复合薄膜孔洞缺陷最少,具有较好的力学性能,断裂伸长率达19.5%,拉伸强度达9.2 MPa。   相似文献   

12.
以端羧基丁腈橡胶(CTBN)和纳米SiO2(nano SiO2)为增韧剂,先利用相反转法将CTBN与环氧树脂(EP)的共聚物制备成乳液,然后加入nano SiO2进行共混,最后加入固化剂经梯度升温固化制得nano SiO2-CTBN改性的水性环氧树脂(nano SiO2-CTBN/WEP)复合材料。通过FTIR、SEM、TEM、万能拉伸试验仪和TG对nano SiO2-CTBN/WEP复合材料的性能进行表征。结果表明:当CTBN含量为20%(与EP E-51的质量比)时,所制备的CTBN/WEP具有较好的储存稳定性,在此基础上加入nano SiO2,当其含量为3%时增韧效果最好,nano SiO2-CTBN/WEP的拉伸强度达14.5 MPa,断裂伸长率达9.1%,冲击强度为11.3 kJ/m2,弯曲强度达22.4 MPa,较未添加nano SiO2的CTBN/WEP分别提高了40.1%、27.4%、73.9%和72.7%,其初始热分解温度也提高了近25℃。  相似文献   

13.
采用浸胶法制备了一系列SiO2-Al2O3/聚酰亚胺(SiO2-Al2O3/PI)五层耐电晕薄膜Am An PAn Am,其中中间层(P)为纯PI薄膜,外层(Am)、次外层(An)分别为SiO2-Al2O3掺杂不同质量分数的纳米SiO2-Al2O3/PI薄膜。采用TEM、FTIR、宽频介电谱仪、电导电流测试仪、耐电晕测试仪、介电强度测试仪和拉伸实验机对五层纳米复合PI耐电晕薄膜的微观结构、介电性能和力学性能进行了表征和测试。结果表明,SiO2-Al2O3/PI复合薄膜掺杂层形成了分布均匀的有机/无机复合结构;SiO2-Al2O3纳米粒子的保护作用是影响复合材料耐电晕性能的主要因素,复合薄膜A32A16PA16A32的耐电晕寿命最大,为23.4 h;外层掺杂量对五层SiO2-Al2O3/PI复合材料的介电强度影响较大,复合薄膜A20A28PA28A20的介电强度最大,为302.3 kV/mm;通过对五层复合结构的设计,可以在兼顾材料力学性能的同时,提高其耐电晕寿命和介电强度。  相似文献   

14.
采用液相原位修饰技术,制备了表面接枝有机硅烷的纳米SiO2(HB-2200)、表面接枝氨基的纳米SiO2(HB-2205N)、表面接枝不饱和双键的纳米SiO2(HB-2205D)、表面接枝氨基和双键的纳米SiO2(HB-2205ND)。利用TEM、SEM、流变仪对纳米SiO2/溶液聚合丁苯橡胶-顺丁橡胶(SSBR-BR)复合材料的结构和性能进行表征。结果表明:与未改性的纳米SiO2相比,表面功能化纳米SiO2与橡胶基体相容性改善,Payne效应降低,纳米SiO2之间的相互作用减弱,其在SSBR-BR复合材料中的分散性提高。HB-2200/SSBR-BR复合材料的混炼扭矩降低了35.7%,混炼能耗降低了15%,结合胶含量增加,填料/橡胶之间的界面结合作用增强,拉伸强度提高了60%。动态热力学和磨耗性能分析表明:纳米SiO2表面引入可反应性双键(HB-2205D),使HB-2205D/SSBR-BR复合材料的抗湿滑性能提高了40%,滚动阻力降低了43%。纳米SiO2表面接枝可反应性双键,可在不牺牲HB-2205D/SSBR-BR复合材料耐磨性能的基础上,降低其滚动阻力,提高其抗湿滑性能,为高性能轮胎的制备提供基础原材料。   相似文献   

15.
选用三种具有不同疏水官能团的硅烷偶联剂,即含苯基的偶联剂1(Ph-1)、含氟基的偶联剂2(F-2)和含环氧丙氧基的偶联剂3(GP-3)对SiO2进行表面改性,并采用空气辅助干法共混、冷压烧结并车削成膜的方法制备了SiO2填充量为35wt%、厚度为50 μm的SiO2/聚四氟乙烯(PTFE)复合薄膜。改性后SiO2在PTFE中分散均匀。研究了不同含量F-2对SiO2/PTFE复合薄膜性能的影响,发现当含氟基的硅烷偶联剂F-2用量(与SiO2质量比)为0.3%时,SiO2/PTFE复合薄膜的针孔缺陷最少,拉伸强度由9.2 MPa提高至16.2 MPa;在10 GHz下,SiO2/PTFE复合薄膜的介电常数由2.475降低至2.416,介电损耗由2.66×10?3降低至2.01×10?3,SiO2/PTFE复合薄膜显示出优异的综合性能。   相似文献   

16.
通过表面接枝技术将硬脂酸甘油酯型流滴剂(B)接枝到纳米SiO2(nano SiO2)表面,制得了nano SiO2接枝B的接枝物(nano SiO2-g-B);将nano SiO2-g-B与预辐照聚乙烯(ir-LLDPE)熔融挤出接枝,制备了nano SiO2-g-B/ir-LLDPE复合材料。利用FTIR、SEM、DSC和加速流滴等对材料的结构和性能进行了表征。结果表明:nano SiO2-g-B/ir-LLDPE复合材料的熔融温度和结晶温度降低,其力学性能较ir-LLDPE没有较大的变化;与普通共混的方法相比,nano SiO2接枝流滴剂方法制备的nano SiO2-g-B/ir-LLDPE复合材料薄膜的流滴期最高可延长6天,达到25天,是相同条件下普通商用流滴剂薄膜的1.47倍。  相似文献   

17.
利用纳米SiO2(nano SiO2)早期可促进聚合物水泥基复合材料水化速率、提升其力学性能、改善其界面过渡区(ITZ)性能及优化其孔隙结构等特点,借助XRD、SEM、EDS、显微硬度(MH)及压汞(MIP)等试验,揭示了nano SiO2对聚合物水泥基复合材料早期性能影响的微观机制。结果表明:当nano SiO2掺量为2wt%时,聚合物水泥基复合材料的力学性能最优,3 d和7 d龄期抗压强度分别为57.5 MPa和67.3 MPa,较仅仅掺加聚合物的水泥基复合材料分别提高了12.7%和13.9%;nano SiO2的掺入改变了聚合物水泥基复合材料水化产物数量及微观形貌。对于ITZ性能,nano SiO2掺入后,聚合物水泥硬化浆体-骨料的ITZ厚度减小,形貌变得更加致密;ITZ的钙硅比因nano SiO2的加入变小而其显微硬度变大;此外,nano SiO2加入后可以进一步填充聚合物水泥基复合材料更加细小的孔隙,使其凝胶孔比例变高,最可几孔径变小,大大优化了聚合物水泥基复合材料的孔隙结构。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号