首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
随着医疗产品市场对生物医用材料需求量的不断增加,比强度高、弹性模量低、耐腐蚀,生物相容性好的钛和钛合金受到人们越来越多的关注。相对于传统的机加工和模压加工工艺,金属粉末注射成形能够实现产品的低成本、大批量近净成形,有效的提高材料利用率,扩大了钛和钛合金的应用范围。本文利用水溶性注射料体系和商用球形钛粉制备了注射料,并进行了力学性能试样的制备,通过优化烧结工艺参数,制得烧结试样的物理力学性能如下:氧含量0.228%,氮含量0.015%,屈服强度443 MPa,极限拉伸强度554MPa,延伸率20.9%,相对密度96.9%。试样整体性能满足ASTM F2989-13外科植入用金属注射成形纯钛部件标准。  相似文献   

2.
钛材料作为目前生物医用性能最好的材料,具有一系列的优良性能,如高比强度、低弹性模量、优良的耐磨耐蚀性和优异的生物相容性。金属粉末微注射成形(Micro MIM)技术作为一种新兴的微加工技术,为钛材料在生物医用微型植入物领域的应用提供了一种低成本、大批量、近净成形途径。利用微注射成形技术制备了纯钛微型试样,并对试样进行了脱粘和烧结。通过调整脱粘和烧结工艺参数,制得整体性能如下的试样:氧质量分数0.240%,氮质量分数0.028%,屈服强度450 MPa,极限抗拉强度565 MPa,伸长率18.0%,相对密度97.3%。试样的整体性能满足ASTM F2989-13外科植入用金属微注射成形纯钛构件要求。  相似文献   

3.
应用粉末注射成形技术制备出高精度、高性能的异形钛合金零器件。通过多粒度粉末搭配,采用聚甲醛为主组元的多组元粘结剂,制备出高装载量催化脱脂型钛合金喂料,再经真空烧结获得制品。研究了催化脱脂工艺的影响因素以及喂料配比对烧结性能的影响。结果表明:当大(D50=25.28 μm)、中(D50=16.75 μm)、小(D50=12.66 μm)颗粒按质量比17:6:2搭配时,钛合金混合粉末相对振实密度较大,为55%。喂料较佳的催化脱脂工艺为:脱脂温度120 ℃,N2通入速率120 cm3·min?1,HNO3气体通入速率1.5 cm3·min?1,脱脂时间6 h,粘结剂脱除率85%。采用全流程控制杂质含量技术,粉末注射成形钛合金制品的烧结性能可以达到相对密度95.9%,拉伸强度933 MPa,抗弯强度1282 MPa,延伸率7.5%,其中C质量分数为0.10%,O质量分数为0.21%。  相似文献   

4.
钛和钛合金由于具有诸如高比强度、低弹性模量、优异的耐腐蚀性以及生物相容性等一系列优良的综合性能,成为目前最有前景的生物医用材料,但是其较差的机加工性能限制了钛材料的应用,尤其是在形状复杂零件中的应用。金属粉末注射成形(MIM)可以实现复杂形状产品的近终成形,这种成形工艺能够大大扩展钛及钛合金的应用范围。利用水溶性注射料进行了力学性能测试试样的制备,通过优化工艺参数,最终获得了相对密度为95.7%的纯钛烧结件,其他主要理化性能如下:氧质量分数0.196%,氮质量分数0.007%,屈服强度403.12 MPa,极限抗拉强度491.33 MPa,伸长率21.4%,除相对密度外其他性能均满足ASTM F2989-13二级纯钛标准。  相似文献   

5.
对平均粒度分别为65.71μm, 26.69μm和19.25μm的3种较粗(相对于一般注射成形用细粉而言)水雾化316L不锈钢粉末进行了注射成形, 讨论了粉末粒度对金属注射成形烧结件性能, 如烧结密度、孔隙形貌、金相组织和力学性能的影响。结果表明, 只要工艺控制得当, 三种粗粉末都能用于金属注射成形, 且可得到比细粉更小和更稳定的烧结收缩率, 较高的密度, 较好的拉伸强度、屈服强度、硬度等力学性能。其中平均粒径为19.25μm粉末的烧结样品的力学性能为: 抗拉强度506 MPa、屈服强度193 MPa、延伸率54%、硬度HRB61, 达到并超过了美国MPIF关于316L不锈钢细粉末注射成形烧结件的性能标准值。  相似文献   

6.
利用PEG基粘结剂体系和气雾化球形Ti6Al4V合金粉制备了成分均匀、流变性能及热性能稳定的注射料,并进行烧结。通过工艺参数调控,1 320℃下保温3 h的烧结试样相对密度97.6%,极限抗拉强度900 MPa,屈服强度867 MPa,伸长率为12%,力学性能整体满足ASTM F2885-11标准要求。高真空烧结条件加速了烧结件的致密化过程,而且能够有效降低氧、氮等杂质元素的含量,除氧元素质量分数(0.229%)略高于标准值(<0.200%)外,其他杂质元素含量均满足ASTMF2885-11标准。  相似文献   

7.
水基凝胶注Ti-6Al-4V合金坯体   总被引:1,自引:0,他引:1  
将凝胶注模工艺应用于金属Ti6Al4V合金粉末的成形,研究了高固相含量的Ti6Al4V合金粉末的料浆的制备,比较了金属浆料与陶瓷浆料的不同。结果表明粉末的颗粒形状是影响浆料固相含量的重要因素,浆料的固相含量随分散剂的增加而增加。最后制备出了固相含量为54%(体积分数,下同)的钛合金粉末浆料和形状复杂的坯体。坯体的抗弯强度随气雾化(GA)Ti6Al4V含量增加先增大后减小,随着坯体的固相含量增大而减小。当GA-Ti6Al4V含量为80%,固相含量为50%时生坯抗弯强度最大,为18.5 MPa。  相似文献   

8.
激光选区熔化(SLM)是一种在医疗领域应用越来越广泛的3D打印工艺,用SLM技术打印齿科钛合金粉末,可以制作出个性化且具有复杂结构的口腔医疗器械。为了研究粉末粒度对SLM工艺的成形适用性,本研究选择了齿科用Ti-6Al-4V合金粉末作为成形材料,通过不同目数的筛网对粉末进行分级,得到不同粒度范围的钛合金粉末。采用EOS M280设备分别成形不同粒度范围的粉末,并对成形过程和成形件表面质量进行对比分析,得出当粉末粒度范围为15~53μm时,熔道连续无缺陷,成形件表面光滑平整,有金属光泽。该粒度范围粉末成形件的内部孔洞很少,强度和塑性均优于铸造件。粒度范围为15~53μm的齿科用钛合金粉末适用于激光选区熔化工艺。  相似文献   

9.
对平均粒径为65.71μm和9.57μm的316L不锈钢水雾化粉及其混合粉末进行注射成形,探讨在粗粉末中加入细粉末对混合粉末的烧结致密化过程和力学性能的影响。结果表明,在粗粉末中加入25%(质量分数)的细粉末,可以提高粗粉末的烧结活性;烧结样密度达到理论密度的95%,抗拉强度达498MPa,屈服强度达192MPa,伸长率为52%,硬度为HRB60,即在粉末成本增加不多的基础上,力学性能大大超过了单一粗粉末烧结样,基本达到了美国MPIF关于316不锈钢注射成形烧结件的性能标准,为316L不锈钢粉末注射成形较大尺寸件提供了一条可行途径。  相似文献   

10.
以Ti、Fe、Mo元素粉及60A140V中间合金粉为原料,通过混料、模压和真空烧结,制备粉末冶金SP-700钛合金,系统研究粉末原料、压制压力及烧结温度等工艺参数对合金相对密度、组织和性能的影响。结果表明,随着压制压力增加,SP-700压坯与烧结体的相对密度均提高;用平均粒度低、氧含量高的Ti粉为原料制备的压坯密度低,而烧结体密度高;烧结温度升高使烧结体密度略微增大。SP-700烧结体组织为晶界和晶内旺层片分布在β基体上;烧结体的性能受粉末原料及烧结温度的强烈影响。与Ti-6Al-4V合金相比,SP-700具有更加细小的组织和更优异的性能。制备SP-700烧结体的最佳工艺以及制品的性能参数为:采用低氧钛粉(0.15%O,平均粒度为73.6μm),在500MPa压力下压制成形、在1260℃真空烧结5h;相对密度达96.3%,抗拉强度为1008MPa,屈服强度为931MPa,伸长率达4.3%。  相似文献   

11.
钛及钛合金兼具低比重、高比强度、优异的生物相容性和良好的耐腐蚀性,在航空航天、生物医疗、化工、汽车等领域有极大的应用潜力。钛及钛合金金属粉末注射成形技术(metal injection molding,MIM)能够实现中小型复杂形状钛产品的大批量、低成本制备,对于推动钛及钛合金产品的生产及应用具有重要意义。本文介绍了金属粉末注射成形钛及钛合金的特点及优势,从粉末原料、黏结剂体系、粉末注射成形、脱黏和烧结等方面综述了钛及钛合金金属粉末注射成形技术的研究进展,并针对目前存在的主要问题,分析了金属粉末注射成形钛及钛合金的研究方向及发展前景。  相似文献   

12.
为了制备高坯体强度和烧结密度的凝胶注模成型不锈钢制件,研究了凝胶注模工艺参数包括预混液单体含量和单体/交联剂比例、浆料固相含量及引发剂加入量等对坯体抗弯强度及烧结体密度的影响规律.结果表明,对于316L不锈钢的凝胶注模成型,可同时获得较好的坯体强度和烧结密度的工艺条件为:预混液单体质量分数18%~22%,单体/交联剂比例90∶1~240∶1;浆料固相体积分数52%~55%;引发剂用量约为单体质量的0.8%~1.4%.最终获得坯体强度高于30.0MPa、烧结密度高于97%的复杂形状烧结不锈钢零件,其烧结体力学性能略低于粉末注射成型时的性能,但远高于美国MPIF标准.  相似文献   

13.
采用金属注射成形(MIM)技术制备了钨铜合金,定量表征了铜粉的粉末粒度和粒形,重点研究了铜粉粒度和粒形对MIM钨铜合金组织与性能的影响。通过对比铜粉的粒径、粒度分布宽度、长宽比、粗糙度、赘生物指数和钝度等特征参数,破碎铜粉与水雾化铜粉颗粒呈枝晶状,粒径远小于还原铜粉,但破碎铜粉粒度分布宽,微观结构上的规则度、表面光滑程度以及分散程度最佳。破碎铜粉混合钨粉为原料,通过MIM技术制备钨铜注射生坯致密度高、缺陷少,烧结后钨铜合金的组织与性能最优,致密度为96.2%,硬度为235HV,抗弯强度为1 200 MPa,热导率为128 W/(m·K),电导率为30%IACS。  相似文献   

14.
The efficiency of strengthening induced by microstructure refinement to an ultrafine-grained (UFG) state is studied on commercial purity VT1-0 titanium and two-phase VT6 and VT22 titanium alloys. An UFG structure with a grain size <0.5 μm is formed by multiaxial isothermal deformation. The refinement of a titanium microstructure to a grain size of ~0.4 μm is found to result in an almost twofold increase in the strength and the fatigue limit. The strength of a VT22 alloy with an UFG structure is equal to that of the thermally strengthened alloy. The strength and fatigue limit of a VT6 alloy with an UFG structure are higher than those of the thermally strengthened state by approximately 25%. The strengthening by microstructure refinement is found to be expedient for low and medium alloys.  相似文献   

15.
分别以元素混合粉、机械合金化粉和水气联合雾化合金粉为原料,结合冷等静压成形、烧结及轧制工艺制备了Cu?5%Fe合金(质量分数),对比了三种原料粉的铜铁合金粉末形貌、微观组织、力学性能及物理性能.结果表明,铁颗粒分布均匀,元素混合、机械合金化和水气联合雾化法粉末烧结体中铁颗粒平均尺寸分别为9.4μm、1.2μm、3.5μ...  相似文献   

16.
Powder Metallurgy and Metal Ceramics - In the production of steel parts employing metal injection molding (MIM), powders with particles within 22 μm are commonly used. Such powders are very...  相似文献   

17.
《粉末冶金学》2013,56(4):263-266
Abstract

Titanium alloys containing β stabilising elements such as Nb, Zr and Ta are particularly promising as implant materials because of their excellent combination of low modulus, high strength, corrosion resistance and biocompatibility. A low elastic modulus is important for implants to avoid stress shielding and associated bone resorption. The difficulty of producing complex shapes of these alloys by conventional methods makes metal injection moulding (MIM) attractive. Ti–17Nb alloy parts with densities 94% of theoretical have been produced by MIM of a feedstock based on blended elemental powders. Scanning electron microscopy reveals a typical α?β Widmanstätten microstructure with a precipitated α phase layer along the grain boundaries. The parts exhibit an ultimate tensile strength of 768 MPa and a plastic elongation of over 5%. The modulus of elasticity, about 84 GPa, is more than 20% lower than that of cp Ti and Ti–6Al–4V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号