首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过超细粉煤灰水泥对膨胀土进行改良,研究了不同掺量超细粉煤灰水泥对膨胀土击实性能、自由膨胀率和力学性能的影响。研究结果表明:激发剂Na OH一定时,随着超细粉煤掺量的增加,膨胀土的最大干密度及最优含水量逐渐降低;超细粉煤灰水泥的掺入可以有效改善膨胀土的自由膨胀率,当超细粉煤灰水泥掺量为12%时,与素膨胀土相比,其自由膨胀率降低了83.06%,而养护龄期对自由膨胀率几乎没有影响。当超细粉煤灰水泥掺量为12%时,其膨胀土无侧限抗压强度最大,掺量超过12%之后,其抗压强度有所降低。随着超细粉煤灰水泥掺量的增加,膨胀土的三轴抗剪强度先增大后减小,建议超细粉煤灰水泥合理掺量为12%。试验研究成果可为改良膨胀土工程性质的研究人员提供参考。  相似文献   

2.
通过无侧限抗压强度试验及直剪试验,研究不同粉煤灰掺量条件下(0、8…%、15…%、20…%、25…%、30…%、40…%),改良膨胀土的力学特性变化规律,研究结果表明:随着粉煤灰掺量增加,膨胀土无侧限抗压强度及抗剪强度参数呈现先增加后减小的趋势,并且得到粉煤灰改良膨胀土的最优掺量为30…%;在最优掺量条件下,改良膨胀土力学参数与粉煤灰掺量呈现指数函数变化关系;粉煤灰显著提高膨胀土无侧限抗压强度及粘聚力,最大增幅分别为0.44…MPa、0.65…MPa,但粉煤灰掺加对于内摩擦角影响较小。因此,可以认为粉煤灰对膨胀土力学强度产生显著改良,较好的满足工程强度要求。  相似文献   

3.
为改善膨胀土工程特性,满足路基填料使用要求,分别研究了玄武岩纤维加筋膨胀土胀缩特性和磷尾矿改良加筋膨胀土力学强度变化规律。研究结果表明:玄武岩纤维可有效改善膨胀土胀缩特性,每增加0.1%纤维掺量,加筋膨胀土膨胀率约下降5.3%~8.6%,当玄武岩纤维掺量为0.3%时,加筋膨胀土膨胀力达到最小值;采用磷尾矿改良0.3%玄武岩掺量的膨胀土,12%磷尾矿掺量对加筋膨胀土力学强度改良效果显著,抗压强度达到峰值。通过室内试验结果,建议改良膨胀土玄武岩纤维和磷尾矿掺量分别为0.3%、12%。  相似文献   

4.
为保证膨胀土填料路用工程性质良好,选用铁尾矿砂处治膨胀土填料,并通过室内试验研究了铁尾矿砂改良膨胀土填料击实特性、膨胀特性、力学特性和水稳定性。结果表明,随掺砂率增大,铁尾矿砂改良膨胀土最大干密度逐渐提高,最佳含水率逐渐降低;随掺砂率增加,铁尾矿砂改良膨胀土膨胀性减弱,掺砂率增加10%,改良膨胀土自由膨胀率和膨胀力分别平均降低17.2%、22.2%;在掺砂率30%时,铁尾矿砂改良膨胀土力学特性和水稳定性最优,较素膨胀土水稳系数约提高16.1%。建议铁尾矿砂改良膨胀土最佳掺砂率为30%。  相似文献   

5.
在建筑物地基及公路路基修建过程中,膨胀土因膨胀特性对其易产生严重的危害,为探讨石屑粉煤灰对膨胀土的胀缩与强度性能的改良效果,在膨胀土中掺加不同品质及不同比例的粉煤灰,通过对膨胀土膨胀性能的抑制效果及强度的改良效果试验,研究石屑粉煤灰品质及掺量对膨胀土胀缩及强度的影响,试验结果表明:掺入石屑粉煤灰能有效抑制膨胀土的膨胀特性,且品质较好的粉煤灰效果更明显。掺加粉煤灰可有效抑制膨胀土膨胀特性,保障建筑物地基及公路路基的稳定性。  相似文献   

6.
对粉煤灰改良膨胀土的改良成效及可行性进行了研究和分析,试验结果表明,随着粉煤灰掺量的增加,膨胀土的塑性以及活性指数、膨胀力、膨胀率乃至膨胀量都逐渐减小,由此表明粉煤灰可以有效对膨胀土浓缩性造成降低影响。经过一定养护期之后的膨胀试验结果表明,随着养护期限的不断递增,膨胀土的膨胀量及膨胀力会随之降低。没有经过养护的膨胀土无侧限抗压强度相对较不明显。在经由养护之后,路堤的土样抗压强度增加,且无侧限抗压强度存在峰值点。  相似文献   

7.
为保证膨胀土路基力学强度和稳定性,通过室内及现场试验研究了石灰改良膨胀土力学特性及施工含水率。结果表明,膨胀土掺入石灰后,最大干密度降低,最佳含水率增加,利于控制路堤施工质量;随石灰掺量增加,改良膨胀土物理力学特性逐渐改善,且石灰掺量≥6%时,改良膨胀土物理力学特性趋于稳定;石灰改良膨胀土路基压实度在含水率ωop+1.5时达到最大值,含水率≤ωop+1.5时,改良膨胀土无侧限抗压强度及CBR随含水率增加呈线性增大,含水率增加1%,无侧限抗压强度和CBR分别至少提高6.9%和2.6%。建议改良膨胀土最优石灰掺量为6%,施工含水率为ωop+1.5。  相似文献   

8.
张雁  王明磊  殷潇潇  冯晓波 《硅酸盐通报》2018,37(11):3604-3610
以煤矸石粉掺入膨胀土中改良膨胀土的胀缩性行为,实现固体废弃物煤矸石再利用为目的.将不同掺量的煤矸石粉加入膨胀土中,进行干湿循环试验,检测试件的含水率、轴向胀缩变形量和强度变化.通过压汞试验获得试样的孔隙特征值,从微观角度揭示膨胀土胀缩行为机理.试验结果表明:吸水膨胀后的试样最终含水率随干湿循环次数的增加而降低,干燥收缩后的试样最终含水率随干湿循环次数的增加而增加;随干湿循环次数的增加,收缩和膨胀试样最终轴向应变逐渐减小,这与含水率变化规律一致;绝对膨胀率和收缩率在第1次循环中达到最大值,此后逐渐减小并趋于稳定.随着干湿循环次数增加黏聚力增强而内摩擦角有所降低,掺加6%煤矸石粉后使膨胀土试样的抗剪强度增大.从孔隙特征分析,试样的膨胀率和收缩率得到抑制,强度增加的主要原因在于掺入煤矸石粉改变了膨胀土的孔径分布.  相似文献   

9.
为了改善膨胀土的胀缩特性,提高膨胀土抵抗干湿循环的能力,本文以江苏南京原始膨胀土为研究对象,研究了在水泥单独作用和玻璃纤维与水泥联合作用两种改良方式下膨胀土的胀缩特性和抵抗干湿循环作用的能力,并结合微观结构分析探索其改良机理。研究发现:两种改良方式均能降低膨胀土的自由膨胀率和收缩率,提高膨胀土的抗压强度、黏聚力和内摩擦角等参数,并显著提高膨胀土抵抗干湿循环作用的能力;玻璃纤维与水泥联合改良比水泥单独改良效果更好,综合实验结果得出玻璃纤维的最佳掺量为0.6%;微观结构表明水泥和纤维能分别以化学作用和物理作用的方式增强土颗粒之间的黏结性能。上述研究成果能为膨胀土的有效治理提供理论依据。  相似文献   

10.
为了提高膨胀土路用性能和实现建筑垃圾资源化利用,本文研究了玻璃纤维与建筑垃圾改良膨胀土的强度特性和胀缩特性,并结合微观特征探索改良机理。研究发现:建筑垃圾和玻璃纤维均能显著提高膨胀土的强度和降低膨胀土的胀缩特性。建筑垃圾和玻璃纤维掺量过高会导致改良膨胀土内部孔隙无法有效填充以及纤维成团现象,从而影响改良膨胀土的路用性能。建筑垃圾和纤玻璃维的最佳掺量分别为40%和0.6%;微观测试结果表明纤维能为膨胀土提供附着点,从而达到增密膨胀土内部结构的效果。上述研究成果能为膨胀土改良和建筑垃圾的资源化利用提供理论基础。  相似文献   

11.
为研究不同黏土掺量对粉煤灰土动力特性影响,设计不同黏土掺量(10…%、20…%、30…%),对黏土粉煤灰的动强度以及抗剪强度参数等动力特性变化规律开展试验研究,并得到动力特性参数与黏土掺量定量表征关系,研究结果表明:随着黏土掺量的增加,粉煤灰混凝土动强度呈现指数函数变化增大,最大增幅可达23.0…k Pa;黏土改良粉煤灰抗剪强度参数,随黏土掺量增加线性提高,粘聚力最大增幅为12.40…k Pa,内摩擦角由17…°增大至25…°,提升约为47.06…%。掺加黏土能够实现对粉煤灰土改良,有效增强粉煤灰土动强度及动抗剪强度,对于具体工程实践可通过工程抗液化要求确定最优黏土掺量。  相似文献   

12.
在粉煤灰质量分数为20%的条件下,分别取长度为6、12、24 mm的聚丙烯纤维掺入粉煤灰稳定膨胀土中,聚丙烯纤维质量分数以0.25%的增幅从0逐渐提升至1.5%,并开展膨胀压力、浸泡加州承载比、无侧限抗压强度和标准击实试验,探究粉煤灰稳定膨胀土路基混合料性能和聚丙烯纤维掺量之间关系。结果显示,在最佳粉煤灰掺量条件下,确保路基处于最佳稳定状态的聚丙烯纤维的质量分数为1.0%、长度为12 mm。  相似文献   

13.
对取自不同场地的膨胀土,掺入4种常用改性剂生石灰、熟石灰、粉煤灰、水泥后,对膨胀土在不同掺入比情况下,改性膨胀土的自由膨胀率、有荷及无荷条件下的膨胀率及变形量的变化规律进行试验研究.研究结果表明:具有强膨胀潜势的膨胀土改性剂的最佳掺量为10%,掺人生石灰后自由膨胀率降幅最大,熟石灰的最小;中膨胀潜势的膨胀土改性剂最佳掺量为8%,掺人生石灰后其自由膨胀率降幅最大,掺入水泥的最小.最佳掺量条件下生石灰和水泥改性土的有荷及无荷膨胀率均较小,且无荷膨胀稳定时间较短,即水泥及生石灰的改性土变形较小,利于其上建构筑物的稳定.生石灰改性效果优于熟石灰,相关研究应明确选用的是生石灰还是熟石灰.  相似文献   

14.
对膨胀土改良方法进行了研究,分别开展了粉煤灰改良方法和粉煤灰混合聚丙烯纤维改良方法的性能试验。通过试验结果发现,在膨胀土中添加一定量的粉煤灰能够有效抑制和减弱膨胀土的膨胀性能,随着粉煤灰添加量的增大,改良试样的膨胀率和膨胀力均减小。与单独添加粉煤灰改良方法相比,采用粉煤灰+聚丙烯纤维对膨胀土进行改良的方法的改良效果更佳。粉煤灰+聚丙烯纤维改良后土样的自由膨胀率、无荷膨胀率和膨胀力都明显比单独使用粉煤灰改良土样要低。粉煤灰混合聚丙烯纤维改良方法在膨胀土改良上将具有较好的应用前景。  相似文献   

15.
研究掺加不同量复合MgO的胶砂试件,在不同水化龄期的力学性能、膨胀性能以及在20、50、80℃水中养护,膨胀率的变化过程和趋势.结果表明:随着MgO掺量的增加,膨胀率相应增加,但强度降低,当掺量在6%~8%时,试件的膨胀量与强度可达到较好的平衡;随着水化温度的升高,相同龄期下水泥浆体膨胀率增大,且7~28d龄期内增加的速率比后期的快,但随着龄期的增加,高温养护时的膨胀速率又逐渐小于低温养护的膨胀速率.  相似文献   

16.
为有效利用钢渣力学性质,通过室内无侧限抗压试验、CBR试验和浸水膨胀试验优选钢渣碎石级配,并设计水泥稳定钢渣碎石材料水泥剂量,研究钢渣掺量和养生龄期对水泥稳定钢渣碎石力学强度影响规律。研究表明,C级配的钢渣碎石材料击实特性、CBR和浸水膨胀率最优,水泥掺量4%的级配钢渣碎石7d抗压强度满足公路工程基层抗压强度设计要求,且水泥掺量超过4.0%时,抗压强度增长速率降低显著;养生初期,水泥稳定钢渣碎石力学强度随钢渣掺量增加呈线性提高;养生龄期超过7d时,钢渣掺量80%的水泥稳定钢渣碎石力学强度最大;不同钢渣掺量的水泥稳定钢渣碎石力学强度在养生前期增长迅速,养生龄期超过28d时,抗压强度增速减缓。  相似文献   

17.
针对粉煤灰轻质混凝土的耐腐蚀特性,研究不同粉煤灰掺量下粉煤灰轻质混凝土在硫酸盐类溶液中的腐蚀特性,根据粉煤灰轻质混凝土的抗压强度、抗拉强度变化,得到粉煤灰轻质混凝土耐腐蚀特性,研究结果表明:随着硫酸盐溶液干湿循环次数增加,粉煤灰轻质混凝土强度均逐渐降低,并且随循环次数的增加呈现指数关系变化;存在最优粉煤灰掺量(w=30%),在最优粉煤灰掺量范围内,随着粉煤灰掺量的增加,粉煤灰轻质混凝土强度降低幅度逐渐减小;同时,粉煤灰轻质混凝土在硫酸钠溶液强度降低幅度要低于在硫酸镁溶液中的降幅。研究成果可为受硫酸盐类侵蚀的工程设计提供基础依据。  相似文献   

18.
研究了石膏、镁质膨胀剂对矿渣油井水泥的早期膨胀性能的影响.随着矿渣掺量的增加,油井水泥的早期膨胀率逐渐降低;随着石膏掺量的增加,矿渣油井水泥早期膨胀率显著增大.在初期,50℃养护下,膨胀率增加;80℃养护下,膨胀率降低.煅烧氧化镁的掺入改善了高温养护下矿渣油井水泥的膨胀性能,水泥石早期膨胀率随着氧化镁含量的增加而显著增大.  相似文献   

19.
张雁  康雪成  郭利勇 《硅酸盐通报》2015,34(9):2720-2724
基于非饱和膨胀土工程病害处治及煤矸石固体废弃物资源化利用的社会需求,通过液塑限试验、击实试验、直剪试验,研究同时加入石灰和煤矸石膨胀土的工程性质变化,通过XRD检测,从各配比混合料的物相变化情况对其机理进行了分析.结果表明:石灰煤矸石膨胀土混合料的塑性、击实性、抗剪性能都得到改善,且优于石灰改良膨胀土.经XRD检测得到在膨胀土中掺加石灰和煤矸石后物相发生了变化,生成晶体结构较为稳定、晶粒较大的新物质钙长石和白云石,为膨胀土提供一定的CaO、MgO、SiO2和Al2O3等有效矿物成分,促使膨胀土的塑性、击实性等工程性质有所改善.因掺入石灰煤矸石比只掺石灰为膨胀土提供更多的有效矿物成分,因此石灰煤矸石优于石灰改良膨胀土的工程性质.  相似文献   

20.
通过击实试验、无侧限抗压强度试验和水稳性试验研究了水泥、粉煤灰掺量对含油污泥热解残渣路基材料性能的影响.结果 表明:随水泥、粉煤灰掺量的增加,最大干密度和最佳含水量均减小.含油污泥热解残渣路基材料的无侧限抗压强度随水泥掺量的增加而增大,考虑经济性和强度值,选择水泥掺量为4%制备路基材料.随粉煤灰掺量的增加(10% ~ 30%),无侧限抗压强度先增大后减小,粉煤灰掺量存在最优值(20%).含油污泥热解残渣路基材料的水稳系数随水泥掺量和龄期的增加而增大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号