首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
稀土元素的添加通常能改善不锈钢的耐腐蚀性能。为了研究稀土元素铈对316L不锈钢耐腐蚀性能的影响,基于扫描电镜(SEM)、动电位极化(PDP)试验,采用有限元方法研究了含不同分布形态夹杂物的316L不锈钢在质量分数为0.9%的NaCl溶液中的早期腐蚀行为。结果表明:添加铈后,316L不锈钢中夹杂物的形态由长条状转变为圆形。有限元模拟发现:当腐蚀初期不锈钢暴露在溶液中的阳极面积相等时,含长条状夹杂物的不锈钢相较于含圆形夹杂物的不锈钢的纵向点蚀速度更快,点蚀坑的尺寸更大,点蚀孔窄且深,更利于点蚀的发展。当不锈钢中夹杂物面积为定值时,夹杂物的近邻分布会加快纵向点蚀速度,增加点蚀坑的数量和尺寸,点蚀孔窄且深;夹杂物远邻分布时,点蚀孔宽且浅。  相似文献   

2.
为了研究异种材料焊缝的耐腐蚀性能,对316L与304不锈钢进行了激光焊接。通过组织观察和XRD技术检测了母材及焊缝微区的组织结构,采用动电位极化的方法测试了316L和304奥氏体不锈钢及其激光对接焊缝的耐腐蚀性能,并分析了焊缝耐腐蚀性提高的原因。结果表明,在室温3.5%NaCl溶液中,焊缝及母材的腐蚀均以点腐蚀为主,且点蚀基本在晶界处萌生,焊缝的耐腐蚀性相对母材有了明显的提高;激光焊缝组织的晶粒尺寸较母材明显细化,相成分以奥氏体为主,有明显的择优生长取向,且奥氏体含量相对母材有所增加,这种相结构特征的变化是焊缝耐腐蚀性提高的主要原因。  相似文献   

3.
为提高医用金属材料的耐腐蚀性能,以一种商用316L不锈钢为研究对象,采用冷轧及退火工艺制备了平均晶粒尺寸为198 nm的超细晶(UFG)、776 nm的亚微米晶(SMG)和1.18μm的细晶(FG)试样,通过电化学实验测定了不同平均晶粒尺寸试样在模拟人体体液中的动电位极化曲线和电化学阻抗谱。结果表明:腐蚀电位和击穿电位随着平均晶粒尺寸的减小而增大,UFG试样具有较高的腐蚀电位(-0.38 VSCE)和击穿电位(-0.03 VSCE);电容半径随晶粒尺寸的减小而增大,晶粒细化后,316L不锈钢在模拟人体体液环境中的耐腐蚀性能得到提高。其中,退火温度750℃条件下保温5 min制备的平均晶粒尺寸为198 nm的超细晶316L不锈钢在模拟人体体液环境中具有最佳的耐腐蚀性能。  相似文献   

4.
采用点蚀电位测量法和扫描电镜研究了钛元素添加对低铬铁素体不锈钢电化学腐蚀性能的影响,结果表明:少量钛元素添加可以使不锈钢中的夹杂物更加弥散,分布更均匀,从而显著提高其耐腐蚀性能;但随着钛含量超过0.029%,第二相点蚀源增加,反而降低了不锈钢的耐腐蚀性能;适量的钛元素有助于消除间隙原子,减小晶界偏聚,从而改善材料耐腐蚀性能。  相似文献   

5.
为改善316L不锈钢在海洋环境下的耐腐蚀性能,通过MnSi2增强316L不锈钢基体,采用选区激光熔化(SLM)制备MnSi2/316L不锈钢复合材料。利用Image-Pro Plus软件、光学显微镜、扫描电镜(SEM)及电化学工作站研究了激光功率对316L不锈钢金属基复合材料致密度及耐腐蚀性能的影响,通过Tafel极化曲线和阻抗谱表征其耐腐蚀性能的强弱,并通过点蚀形貌揭示了其腐蚀机理。结果表明:添加MnSi2是提高316L不锈钢耐腐蚀性能的有效途径。随着激光功率的增大,耐腐蚀性能呈现先提高后降低的趋势,当激光功率达到190 W时,2%MnSi2/316L不锈钢复合材料的致密度为99.80%,其腐蚀电位为-0.053 V (vs SCE)。同时,2%MnSi2可以显著改善316L不锈钢的成形质量,提高其耐腐蚀性能,其腐蚀形式为氯离子诱导氯化物生成的点蚀,且点蚀产生位置主要集中在孔隙边界处。  相似文献   

6.
用电化学方法研究了C15不锈钢的点蚀电位和缝隙腐蚀行为。结果表明:在30℃的3.5%NaCl溶液中,C15不锈钢的自腐蚀电位和点蚀电位均高于对比材料316L和1Cr18Ni9Ti不锈钢的;C15不锈钢缝隙试验用试样在施加0.8V(SCE)恒电位条件下不发生腐蚀。  相似文献   

7.
采用静态浸泡腐蚀实验、电化学分析方法等研究连续定向凝固方法制备的具有连续柱状晶组织的Cu-12%Al(质量分数,下同)合金在3.5%NaCl(质量分数)溶液和10%HCl(体积分数)溶液中的耐腐蚀性能及腐蚀机理。结果表明:Cu-12%Al合金在3.5%NaCl溶液中的耐腐蚀性能可达到耐蚀级。虽然在40℃以下的10%HCl溶液中该合金的耐腐蚀性能可达到耐蚀级,但在40℃以上的10%HCl溶液中的耐腐蚀性能欠佳。连续柱状晶组织Cu-12%Al合金的耐腐蚀性能优于Al含量为5%~11%的传统铝青铜和QBe2合金的耐腐蚀性能,但劣于QBe2.15合金的耐腐蚀性能。在3.5%NaCl溶液和10%HCl中连续柱状晶组织Cu-12%Al合金的自腐蚀电位分别为-271 mV(vs SCE)和-333 mV(vs SCE)。腐蚀发生后试样表面的Al元素含量明显下降,腐蚀机制为脱铝腐蚀。  相似文献   

8.
目的在316L不锈钢基体表面磁控溅射Ni CrZr薄膜,提高其在3.5%NaCl溶液中的耐蚀性。方法采用非平衡磁控溅射技术,在316L不锈钢基体上,用Ni Cr(原子比80:20)复合靶和纯Zr靶制备了不同Zr含量的Ni CrZr薄膜。采用XRD、原子力显微镜、扫描电镜和Gamry电化学工作站,分别分析了Ni Cr Zr薄膜的物相组成、表面形貌、表面粗糙度、截面形貌、元素组成、厚度以及在3.5%NaCl溶液中的电化学腐蚀性能。结果随着Zr靶功率的增加,薄膜中Zr含量不断增加,薄膜的组织结构不断细化,表面粗糙度由4.91 nm减小到了2.79 nm。薄膜主要由Cr3Ni2、Cr1.2Ni0.8Zr、Cr2Zr、CrO3、Ni Cr O4和ZrO2相组成,表明薄膜容易在空气中氧化。此外,随着Zr含量的增加,与316L基体相比,Ni Cr Zr薄膜在3.5%NaCl溶液中的腐蚀电流减小,腐蚀电位增大。当Zr原子分数为24.73%时,NiCrZr薄膜可以在溶液中形成稳定的钝化膜,从而表现出最佳的耐蚀性,腐蚀电流密度达到最小值13.10nA/cm2,与316L基体相比减小了95%。结论 Zr含量的增加可以使薄膜变得更加细密,有效阻隔电解质与基体的接触,从而提高涂层的耐蚀性。  相似文献   

9.
目的选择合适的稀土制备Ti/Cr-RE双层涂层,提高不锈钢的耐腐蚀性能。方法采用两步粉末包埋法,先在304不锈钢表面渗Ti,再制备稀土改性Cr涂层,获得Ti/Cr-RE双层涂层。通过添加不同的稀土氧化物Y2O3和Ce O2,获得两种双层涂层,对比分析涂层的表面形貌、断面形貌及物相组成,利用电化学测试方法测定304不锈钢基体及两种Ti/Cr-RE双层涂层在3.5%(质量分数)Na Cl溶液中的电化学腐蚀性能。结果添加不同稀土元素钇、铈,都能在渗Ti不锈钢表面形成一层致密、连续的稀土改性渗铬层。在两种稀土元素改性的Cr涂层中,稀土元素分别与Cr,Fe,Ni,Ti形成了金属间化合物。304不锈钢基体的自腐蚀电位为-0.324 V,腐蚀电流密度为0.1363μA/cm2;钇改性铬涂层的自腐蚀电位为-0.341 V,腐蚀电流密度为0.2058μA/cm2;铈改性铬涂层则具有更高的自腐蚀电位(-0.263 V)及更低的腐蚀电流密度(0.030 86μA/cm2)。结论钇改性铬涂层不能提高304不锈钢基体的耐腐蚀性能,铈改性铬涂层可以明显提高基体的耐腐蚀性能。  相似文献   

10.
《热处理》2017,(4)
对AISI 316奥氏体不锈钢进行了450℃×6 h的等离子体源渗氮,获得了厚度约为17μm、氮浓度高达20%(原子分数)的面心立方γ_N相渗层。采用阳极极化和电化学阻抗谱(EIS)研究了γ_N相在3.5%NaCl溶液中的电化学腐蚀行为。结果表明,γ_N相的阳极极化曲线呈现出活化溶解-自钝化-过钝化溶解过程,γ_N相未发生点蚀。与奥氏体不锈钢原材料相比,γ_N相的自腐蚀电位高226 mV,钝化电流密度低了近一个数量级。钝化膜电化学阻抗谱的容抗弧直径增大,相位角变宽,采用等效电路R_s-(R_(ct)//CPE)拟合的电荷转移电阻R_(ct)增大,双电层电容C_(dl)降低,耐蚀性能显著提高。随着渗层浸入3.5%NaCl溶液中的时间的延长,γ_N相钝化膜的耐蚀性改善,发生点蚀的倾向性减小。  相似文献   

11.
采用316L奥氏体不锈钢小尺寸试样进行预研制,初步确定了预制大尺寸试样应力腐蚀裂纹的参数.结果 表明:3.5%(质量分数)NaCl溶液,-1.2 V(相对于SCE)外加电位,降低应变速率,并延长极化作用时间有利于应力腐蚀的发生,且降低断后伸长率.在此基础上,100 kN保载24 d后,以0.5×10-6 s-1应变速率...  相似文献   

12.
在精对苯二甲酸(PTA)生产中,选取干燥机BM302壳体常用材料奥氏体不锈钢AIS316L为研究对象,在醋酸环境中,对AISI 316L受Br-及Cl-作用的电化学极化试验和电化学阻抗试验进行腐蚀性试验研究。试验结果表明,Br-或Cl-浓度的增加都会导致AISI 316L不锈钢腐蚀速率增加、击穿电位降低、腐蚀反应电阻减小,导致其耐腐蚀性能下降,腐蚀加剧。为PTA设备腐蚀的现场监测和设备维护提供参考依据。  相似文献   

13.
通过测定3种不同成分的铝黄铜在NaCl(3.5%)溶液和NaCl(3.5%)+NH4Cl(0.5 mol/L)溶液中的腐蚀速率、电化学行为分析,以及对腐蚀产物层进行SEM观察和XRD分析,研究了铝黄铜的腐蚀行为。结果表明:添加Ce可以降低铝黄铜在NaCl(3.5%)溶液中极化时的自腐蚀电流密度;含Ce的Cu-Zn-Al-Ni-B-Ce在NaCl(3.5%)溶液中腐蚀后腐蚀产物层表现出最佳的腐蚀形貌和耐腐蚀性能,而添加稀土并不能改善铝黄铜在NaCl(3.5%)+NH4Cl(0.5 mol/L)溶液中的耐腐蚀性能;联合添加As和Ce的Cu-Zn-Al-Ni-As-B-Ce在这2种介质中的耐腐蚀性能反而下降。  相似文献   

14.
采用金相显微镜、X射线衍射仪、扫描电镜和失重腐蚀试验,研究了不同Ce加入量时AZ31镁合金的显微组织、相组成及其在3.5%NaCl溶液中浸泡后的表面腐蚀形貌及腐蚀速率。结果表明:AZ31镁合金的显微组织主要由α-Mg固溶体和β-Mg_(17)Al_(12)相组成;加入质量分数为1.0%Ce~3.5%Ce后,AZ31镁合金的组织主要为α-Mg固溶体和Al-Ce相。当Ce含量为1.0%时,Al-Ce相尺寸小、数量少且沿晶界分布;随Ce含量增加,Al-Ce相数量增加,且出现偏聚加重现象。当Ce含量≤1.4%时,随Ce含量的增加,AZ31镁合金浸泡腐蚀76 h后的失重腐蚀速率变化较小;但当Ce含量1.4%时,随Ce含量增加,该合金腐蚀速率急剧增大,耐腐蚀性能下降。向AZ31镁合金中加入Ce,形成了Al-Ce相,抑制了β-Mg_(17)Al_(12)析出。添加1.0%Ce时,AZ31镁合金耐腐蚀性能达到最佳。  相似文献   

15.
为获得高强耐蚀的镁稀土合金,采用扫描电镜、X射线衍射分析、腐蚀失重法、电化学阻抗和动电位极化等研究了元素Ce对Mg-9Gd-4Y-1Nd-0.6Zr合金微观组织和耐蚀性的影响。结果表明添加0.5% Ce后合金耐腐蚀性能较好,合金的腐蚀电流密度为不含铈合金的55.6%,腐蚀电位正移约141 mV。适量Ce元素的加入导致其他稀土元素在晶界处富集并呈网状分布,使第二相粒子尺寸变小,体积分数变大。  相似文献   

16.
《电焊机》2015,(7)
利用动电位极化曲线、电化学阻抗谱研究双牌号材料316/316L换热管和316/316L管板焊接接头与316L换热管和316L管板焊接接头的在3.5%Na Cl溶液中的电化学腐蚀行为。结果表明:双牌号材料316/316L的焊接接头耐蚀性能更优越,选择合适的焊接工艺有利于提高焊接接头的耐腐蚀性能。  相似文献   

17.
1Cr18Ni9Ti 不锈钢表面电火花熔覆 WC 涂层特性研究   总被引:1,自引:0,他引:1  
目的研究1Cr18Ni9Ti不锈钢经电火花强化后,WC涂层的显微组织和性能。方法采用电火花熔覆技术在不锈钢1Cr18Ni9Ti基体表面制备WC熔覆层,并分析熔覆层的表面形貌、显微组织、显微硬度、耐磨性,采用线性极化法研究熔覆层在3.5%(质量分数)Na Cl腐蚀溶液中的耐腐蚀性能。结果熔覆层组织均匀、连续、致密,与基体呈冶金结合。显微硬度最大值达到1680HV0.3,平均值为1336HV0.3,比不锈钢基材提高了4倍,耐磨性是不锈钢基材的4倍。在3.5%Na Cl腐蚀溶液中,熔覆层的自腐蚀电位较不锈钢减小了约165 m V,击破电位低于不锈钢基材,维钝电流密度高于不锈钢基材。结论熔覆层具有高硬度和高耐磨性能,磨损机理主要是粘着磨损和磨粒磨损,但在3.5%Na Cl腐蚀体系中,耐腐蚀性能低于1Cr18Ni9Ti不锈钢。  相似文献   

18.
硅烷涂层对316L不锈钢耐腐蚀性能的影响   总被引:1,自引:1,他引:0  
目的提高316L不锈钢的耐腐蚀性能。方法在316L不锈钢样品表面涂覆主要成分为1,2-二(三乙氧基硅基)乙烷(BTSE)的硅烷涂层。通过电化学分析测试,评价涂覆硅烷涂层的316L不锈钢的耐蚀性,并通过扫描电子显微镜和扫描电化学显微镜对其表面形貌进行分析。结果在相同的腐蚀环境下,与未涂覆硅烷涂层的316L不锈钢样品相比,涂覆硅烷涂层样品的表面更加光滑,点蚀现象明显好转。电化学测试结果显示,涂覆硅烷涂层的316L不锈钢样品的腐蚀电位为?565.02m V,未涂覆硅烷涂层样品的腐蚀电位为?796.01 mV,前者明显高于后者,其腐蚀倾向明显减小。另外,涂覆硅烷涂层的316L不锈钢样品的腐蚀电流为2.5177μA,未涂覆硅烷涂层样品的腐蚀电流为5.4291μA,涂覆硅烷涂层样品的腐蚀电流明显更小,表现出了更好的耐腐蚀性能。通过观察扫描电化学显微镜图像可以得出,未涂覆硅烷涂层的316L不锈钢样品的电流范围为?3.144×10?9~?1.957×10?9 A,涂覆硅烷涂层的316L不锈钢样品的电流范围为?3.004×10?9~?1.975×10?9A,涂覆硅烷涂层样品的电流范围更窄,腐蚀程度明显减轻。结论在316L不锈钢表面涂覆硅烷涂层可以在一定程度上减缓样品的腐蚀程度,硅烷涂层起到了物理屏障的作用,显着提高了316L不锈钢的耐腐蚀性。  相似文献   

19.
节镍型不锈钢的耐腐蚀性能比较   总被引:1,自引:0,他引:1  
通过3.5%NaCl溶液中动电位极化曲线测定和中性盐雾试验,对200系列奥氏体不锈钢和400系列铁素体不锈钢两类节镍型不锈钢与304不锈钢的耐腐蚀性能进行了对比研究。结果显示,400系列铁素体不锈钢的耐点蚀性能优于200系列奥氏体不锈钢,两种节镍型不锈钢的耐点蚀性能均不如304不锈钢好;200系列奥氏体不锈钢的耐均匀腐蚀性能最差,443不锈钢耐均匀腐蚀性能与304不锈钢相当,439不锈钢比304不锈钢耐均匀腐蚀性能稍差。201、202、304、439和443不锈钢在3.5%NaCl溶液中的点蚀电位分别为(vs.SCE)-32 mV、-22 mV、312mV、165 mV和227 mV,腐蚀速率分别为0.0071 mm/a、0.0062 mm/a、0.0026 mm/a、0.0038 mm/a和0.0024mm/a。  相似文献   

20.
采用动电位极化测量技术测量304不锈钢在3.5%NaCl水溶液中不同电位扫描速率下的极化曲线,并且采用Tafel直线外推法测定了该钢的自腐蚀电流密度、自腐蚀电位、自腐蚀速率以及不锈钢钝化膜的击破电位。结果表明,在3.5%NaCl溶液中,随着电位扫描速率的增大304不锈钢钝化膜的击破电位降低,自腐蚀电流密度增大,自腐蚀电位负移。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号