首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 553 毫秒
1.
为实现低品质长石资源的高值化利用,对赣南某钾长石矿进行了矿石性质研究和可选性试验,确定了"高梯度强磁-分级脱泥-反浮选除铁-石英分离"的选矿工艺。试验结果表明,该工艺可使钾长石精矿中钾钠含量达到13.7%,Fe2O3含量降至0.12%,并获得Si O2含量为99.26%,Fe2O3含量为0.08%的石英精矿。所得长石精矿达到平板玻璃用一等品等级(JC/T 895-2000),石英精矿达到日用陶瓷用优等品质量标准(QB/T 1637-2016)。  相似文献   

2.
分析了某低品位钾长石矿的主要矿物成分,K2O+Na2O含量为7.47%。针对该钾长石矿的性质,进行了单一磁选、脱泥-磁选、浮选、脱泥-磁选-浮选四个除铁流程试验,结果表明浮选法除铁效果较佳。试验首先采用阴离子捕收剂十二烷基磺酸钠和石油磺酸钠反浮选除去长石矿中细粒的含铁矿物,再经HF法用十二胺捕收剂对长石-石英进行分离,结果表明,可得产率43.57%、含Fe2O30.25%、K2O13.10%、Na2O0.21%、SiO266.77%的长石精矿和产率41.33%、含Fe2O30.18%、SiO297.66%的石英精矿。   相似文献   

3.
采用无氟浮选工艺对低品位钾长石矿进行了浮选试验研究,试验结果表明,采用磨矿-沉降脱泥-一粗一精-强磁选的选矿工艺流程,在磨矿细度为-0.074mm含量占50%,粗选pH为4,油胺与石油磺酸钠用量分别为800g/t、1600g/t时,可获得产率59%,K2O+Na2O品位为12.55%的长石产品,同时可获得产率为19.94%,SiO2品位为97.12%石英产品。此选矿工艺为该长石资源的综合利用提供了参考。  相似文献   

4.
某高铁钾长石矿除铁试验研究   总被引:1,自引:0,他引:1  
某钾长石矿属高铁难选钾长石矿,通过探索试验(包括干式强磁试验、磁选尾矿浮选试验),对比不同选矿工艺的除铁效果,确定采用浮选工艺.通过浮选条件试验,选定了最佳的浮选工艺条件,长石产品Fe2 O3含量为0.20%,达到了工业应用的要求.  相似文献   

5.
分析了江西某地钾长石矿尾矿性质,阐述了长石除铁工艺及设备;试验研究表明:通过采用粗颗粒干式磁选抛尾-陶瓷球磨矿-永磁高梯度磁选-电磁高梯度磁选工艺流程除铁,磁选精矿Fe2O3含量由原矿的1.06%降低到0.075%,获得高档钾长石粉产品,具有良好的经济效益和社会效益.  相似文献   

6.
我国长石资源丰富,但富矿资源少,可被直接开采利用的优质钾长石资源并不多,绝大部分需通过富集才能达到工业应用的标准。内蒙古白云鄂博矿床是世界闻名的 Fe-Nb-REO超大型矿床,钾板岩属于白云鄂博矿体上部围岩。在包头钢铁(集团)公司对该铁矿40余年的开采中,已剥离的富钾板岩作为废石在矿区大量堆存,总量超过3.0亿t,每年新增剥离富钾板岩达200万t,白云鄂博矿区钾板岩资源丰富,为提高白云鄂博矿物的综合利用,实现钾长石资源的可持续发展提出从白云鄂博矿钾板岩中回收钾长石。长石矿物常与其他杂质矿物共生,特别是其中的铁等少量杂质元素,影响钾长石精矿的品质和应用。针对内蒙古白云鄂博矿钾板岩,试验的主要目的是确定有效去除高铁钾板岩中铁矿物和云母等硅酸盐类含铁杂质的工艺流程。对白云鄂博高铁富钾板岩进行工艺矿物学分析,确定了“破碎-磨矿-永磁磁选-超导磁选”试验工艺流程,以K2O品位12.66%,Na2O品位为0.6%,TFe品位为5.55%的钾板岩为原矿,在磨矿粒度-0.074mm为92%的条件下,经永磁磁选,超导磁选试验最终得到K2O品位为15.53%,回收率为54.21%,TFe品位为0.55%的钾长石精矿,结果表明利用永磁+超导磁选工艺可以实现从钾板岩中高效回收钾长石,工艺简单可行,为从白云鄂博矿钾板岩中回收钾长石探索新的途径。  相似文献   

7.
某钾长石矿有害杂质Fe2O3含量为0.47%,严重影响其在陶瓷等行业中的应用。以该钾长石矿为研究对象,在工艺矿物学研究的基础上采用“磁选-反浮选”的联合选矿工艺进行除铁试验研究。结果表明,该工艺最终可获得产率为72.62%,Fe2O3含量为0.087%的钾长石精矿,显著降低了Fe2O3含量,除铁效果较理想。  相似文献   

8.
某含铷矿石中Rb_(2)O的含量为0.046%,铷元素没有独立的矿物存在,以类质同像赋存于含钾矿物(钾长石和黑云母)中,且铷的载体矿物与脉石矿物石英紧密共生,属于极低品位难选含铷矿石。为确定该含铷矿石的选矿工艺,较好地实现资源综合利用,对其进行磨矿细度试验、捕收剂条件试验、精选条件试验和浮铷尾矿综合回收试验的研究。结果表明,确定使用组合捕收剂椰油胺+SDS和抑制剂水玻璃的药剂制度下,固定磨矿细度为-0.074 mm占65%,采用“一粗两精两扫”浮选回收黑云母和部分钾长石中的铷,浮铷尾矿经磁选—浮选回收长石的工艺。全流程闭路试验可获得Rb_(2)O品位0.114%、Rb_(2)O回收率57.23%的铷精矿和Na_(2)O品位4.21%、Na_(2)O回收率48.66%,K_(2)O品位3.96%、K_(2)O回收率31.92%,白度为69%的长石精矿,有效地回收铷资源和长石产品,为该含铷矿石工业开发提供技术支撑。  相似文献   

9.
河南某低品位钾长石矿开发利用技术研究   总被引:1,自引:0,他引:1  
采用浮选工艺对河南某低品位钾长石矿进行了综合利用研究,试验结果表明,采用原矿—磨矿—脱泥—长石石英分离浮选—强磁选的选矿工艺流程,可获得产率58.30%、K2O+Na2O=12.12%的长石产品,同时可得到产率为19.94%、SiO297.12%石英产品,实现了少尾工艺,从而为该矿资源的合理开发做出了较好的选矿评价。  相似文献   

10.
采用工艺矿物学研究某长石矿原矿性质,针对此性质应用"洗矿-弱磁-强磁-浮选"的工艺流程,得到K2O与Na2O总含量大于12%、Fe2O3含量为0.15%的高品质长石。  相似文献   

11.
针对川西某伟晶岩锂辉石矿原矿性质复杂的特点,对其进行了强化浮选分离及综合利用试验研究。通过三种流程方案对比,确定最优的选别工艺"阶段磨矿-阶段选别-组合捕收剂强化浮选分离技术",可分别获得产率为5.26%的云母精矿;Li_2O品位高达6.20%,回收率为87.34%的锂辉石精矿。通过对浮锂尾矿进一步回收长石的选矿工艺流程试验,可以获得K_2O+Na_2O含量为11.33%,作业回收率为85.77%,全流程K_2O+Na_2O回收率达到50.57%,Fe_2O_3含量只有0.21%的长石精矿,在一定程度上实现了此类难选伟晶岩型锂辉石矿的综合利用。  相似文献   

12.
针对福建某钾长石矿,先采用高梯度磁选机进行除铁试验,然后在酸性条件下(pH值2-3),进行长石石英浮选分离试验,获得长石精矿含K209.75%和Na:04.36%。为了进一步提高钾长石中K:0的含量,采用氯化钠做抑制剂实现钾长石与钠长石分离,最终获得了含K:013.01%,Na202.18%和0.17%Fe203的钾长石精矿。  相似文献   

13.
黑龙江某大型钼矿选钼尾矿K2O品位为6.91%,Na2O品位为1.79%,经过试验研究采用脱泥-浮选除杂-长石浮选-强磁选除杂的工艺流程,选钼尾矿脱泥后采用油酸钠浮选除杂,然后添加硫酸调整pH值至3.6,采用BK440作长石捕收剂浮选分离长石与石英,长石浮选精矿在15000kA/m场强下脱除磁性矿物,获得长石精矿K2O品位为11.54%, Na2O品位为2.51%,K2O回收率为47.73%;Na2O回收率为40.30%。长石精矿达到制钾肥钾长石质量标准。  相似文献   

14.
河北省某碱性长石花岗岩铷矿,稀有金属以铷为主,伴生有锂、铯、铌、钽。铷和铯以类质同象的形式赋存于钾长石和铁锂云母中,锂主要以铁锂云母形式存在。铌钽主要以独立矿物存在于铌钽铁矿中。采用"弱磁-强磁-浮选云母-长石石英分离"的联合选矿工艺流程,最终可获得Nb_2O_5品位3 241g/t、Ta_2O_5品位1 091g/t、Nb_2O_5回收率54.32%、Ta_2O_5回收率45.45%的铌钽铁精矿。Rb_2O品位11 941g/t、Li_2O品位25 220g/t、Cs_2O品位2 265g/t、Rb_2O回收率28.51%、Li_2O回收率75.89%、Cs_2O回收率54.77%的云母精矿。Rb_2O品位2 276g/t、Rb_2O回收率54.58%的长石精矿以及SiO_2品位98%以上的石英精矿。回收铷等稀有金属矿的同时,云母、长石、石英亦得到了分选回收与综合利用。  相似文献   

15.
针对湖北某长石矿云母含量高、矿石易泥化的特点,采用"粗磨-云母浮选-再磨-脱泥-长石浮选"的选矿流程,可以得到产率为70.54%,K2O+Na2O品位为11.10%,Al2O3含量为17.02%,回收率为81.14%的长石精矿,从而为该资源的合理开发提供了基础技术依据。  相似文献   

16.
对辽宁抚顺某地长石矿进行选矿试验研究,通过岩矿分析、化学分析等方法,采用"破碎-磨矿-磁选-脱泥-浮选"试验工艺流程,以K_2O品位6.34%,Na_2O品位2.51%,Fe_2O_3含量(质量分数,下同)0.68%的长石矿为原料,磨矿细度-0.074 mm占62.00%,不同用量的十二胺盐酸盐溶液作为捕收剂,硫酸溶液作为调整剂,最终得到K_2O品位7.85%、回收率64.50%,Na_2O品位3.09%、回收率64.31%,Fe_2O_3含量0.13%,TiO_2含量0.03%的长石精矿,满足工业合格品要求。  相似文献   

17.
以某铷矿强磁尾矿为研究对象,通过工艺流程对比、入选粒度、抑制剂和捕收剂筛选等试验研究,最终确定重选-优先浮选联合工艺。试验获得了含铷钾长石、钠长石和石英精矿,其中:钾长石精矿中Rb_2O品位0.177%,产率30.22%;钠长石产品中Na_2O+K_2O含量为10.64%(Na_2O8.32%),产率33.51%;石英产品SiO_2含量为96.21%,产率23.27%。该工艺基本实现了尾矿中全元素综合利用,可有效解决尾矿大量排放和利用率低的难题,实现矿产资源的高效开发利用。  相似文献   

18.
某低品位云母—长石型铷矿原矿品位Rb_2O 0.11%。为了回收该铷矿资源,采用浮选回收含铷长石、云母从而回收铷。试验研究结果表明,在酸性条件下,通过云母和部分易浮长石混合浮选—难浮长石浮选的闭路试验流程,可获得混合精矿品位为Rb_2O 0.3106%,回收率为54.24%,长石精矿品位为Rb_2O 0.2311%,回收率为37.08%,总铷精矿品位为Rb_2O0.2725%,回收率为91.32%的技术指标。  相似文献   

19.
李志 《现代矿业》2022,(11):19-21
广西石排冲矿区钾长石矿产主要赋存于晚侏罗世斑状黑云母钾长花岗岩风化壳中,原岩结构清楚,岩石松散-半松散状。为合理利用该区域矿产资源,通过地质调查及矿石性质分析,发现其矿物成分主要为钾长石,其次为斜长石,矿石类型为风化花岗岩型长石矿,原矿w(K2O+Na2O)为6.62%,经筛分后净矿中w(K2O+Na2O)为10.67%,达到了日用陶瓷长石精矿粉合格品品质要求。  相似文献   

20.
四川某钾长石矿中含K2O 9.81%,Na2O 2.25%,属于优质钾长石矿,但由于含铁量高,白度低,未能开发利用。采用SLon立环脉动高梯度磁选机3次除铁,最终工业生产钾长石产品中Fe2O3含量降至0.07%,白度提高到65%以上,产率在70%以上,获得优质钾长石产品。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号