首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用电化学阻抗谱(EIS)、动电位极化曲线、循环极化曲线(CP)研究了316L,2205,254SMo和2507不锈钢在含不同浓度Cl-的高炉煤气管道冷凝模拟液中的腐蚀行为。结果表明,随着Cl-浓度的增加,该四种不锈钢电极的电荷转移电阻均逐渐减小,其中2507不锈钢电极的电荷转移电阻最大,其次为254SMo不锈钢,而316L不锈钢的最小。316L不锈钢电极的极化曲线没有钝化区,腐蚀电流密度较大;254SMo和2507不锈钢电极的极化曲线存在明显的钝化区,显示较好的耐蚀性。254SMo和2507不锈钢电极的循环极化曲线中的折回段几乎沿原曲线逆向变化,显示其表面钝化膜破坏后的修复能力强;2205不锈钢回扫电流始终大于正扫电流,其钝化膜修复能力相对较差。  相似文献   

2.
采用动电位极化、恒电位极化、Mott-Schottky以及XPS测试研究了254SMo、904L、316L 3种奥氏体不锈钢在模拟烟气冷凝液中的钝化行为。结果表明,在模拟烟气冷凝液中,随着Mo含量的增加,钝化区变宽,点蚀电位变正,维钝电流密度降低,使得254SMo钢耐蚀性增强,适用于烟气脱硫环境中。同时,随着冷凝液pH的增大,3种钢的平带电位负移,施主密度不断减小,表明其钝化膜的缺陷随着pH的增加而减少,耐蚀性增加。  相似文献   

3.
采用极化曲线,电化学阻抗谱和Mott-Schottky曲线研究了不同时效温度下,PH13-8Mo高强不锈钢在3.5%NaCl溶液中形成的钝化膜性能。结果表明:时效温度对PH13-8Mo高强不锈钢耐点蚀性能有影响,具体表现为:时效时间为4 h,随时效温度升高,于480~595℃温度区间点蚀电位持续降低,温度升至621℃时,点蚀电位升高。电化学阻抗谱结果表明:随时效温度升高,钝化膜表面阻抗先增大后减小,温度升高到621℃,阻抗增大,与极化曲线测试结果一致。Mott-Schottky测试结果表明,不同时效温度下PH13-8Mo高强不锈钢表面钝化膜的致密性不同。  相似文献   

4.
采用电化学测试研究了S32750超级双相不锈钢在3.5%Na Cl溶液中的临界点蚀温度(CPT)及电化学腐蚀机理,结合试样点蚀前后的形貌变化,得出S32750不锈钢的临界点蚀温度为71℃。在低于临界点蚀温度时,不锈钢表面能形成稳定的钝化膜;高于临界点蚀温度时,由于Cl-的活性增加及钝化膜的溶解,不锈钢表面产生点蚀现象,且温度越高,点蚀越剧烈。构建了双相不锈钢S32750临界点蚀温度前后的电化学腐蚀模型。  相似文献   

5.
通过开路电位、动电位极化曲线、电化学阻抗谱以及XPS测试研究了316L、254SMo、C276和Inconel 740H 4种耐蚀合金在超超临界锅炉烟气冷凝液中的腐蚀行为.结果表明,4种耐蚀合金在所研究烟气冷凝液中均表现出钝化特性,但是由于合金元素及其含量的差异,环境中的酸根离子对表面钝化膜的破坏作用存在差异.其中25...  相似文献   

6.
采用化学浸泡实验研究了6%FeCl_3+1%HCl混合溶液中温度与浸泡时间对2205双相不锈钢点蚀行为的影响,并分析2205双相不锈钢在含Cl~-环境下点蚀机理。通过高分辨相机与激光共聚焦显微镜及X射线光电子能谱(XPS)观察并分析样品表面形貌及钝化膜成分,采用电化学手段及原子力显微镜分析模拟海水溶液中温度对2205不锈钢耐腐蚀性能的影响。结果表明:2205双相不锈钢的临界点蚀温度(CPT)在45℃左右,当温度低于45℃时,延长浸泡时间样品表面未出现明显点蚀;温度高于45℃时,随浸泡时间延长点蚀在样品表面随机萌生并长大扩展,55℃时点蚀坑尺寸达到500μm。随着温度的升高,样品钝化区间缩短,点蚀电位显著降低,由30℃时的0.74 V降低到60℃时的0.27 V。XPS结果显示,随温度增加,样品钝化膜稳定性增加,表现为金属稳定氧化物及氢氧化物的含量增加。样品阻抗值的大小随温度的升高不断减小,在30℃时样品阻抗值为5.066×10~5Ω·cm~2,温度升高到60℃阻抗值减小到1.814×10~5Ω·cm~2。随着温度的逐渐升高,2205不锈钢腐蚀速率增大,电化学阻抗值减小,钝化膜的保护能力下降,耐点蚀性能变差。  相似文献   

7.
为了研究高盐废水pH值对304不锈钢点蚀行为的影响,本文选择pH值为3,6.8和12.6的3种高盐废水溶液,对其进行了循环极化曲线、Motty-Schotty曲线(M-S)和扫描振动电极技术(SVET)的研究。结果表明:304不锈钢的钝化膜在酸性溶液中具有N型半导体的性质,在中性和碱性溶液中具有P型半导体性质;在pH值为3的溶液中的循环极化曲线上的滞后环率先出现,并且滞后环面积最大,说明304不锈钢在酸性溶液中点蚀的扩展速率最大;另外,SVET数据显示在酸性溶液中的电流密度最大,且随腐蚀时间增加而增大;腐蚀后SEM形貌也证实了此结论。  相似文献   

8.
运用氧化-冷凝液蒸发循环方法模拟汽车消声器内腐蚀环境,研究了409不锈钢在两种冷凝液中的腐蚀行为,并分析了Cl-对冷凝液腐蚀的作用.结果表明,经250℃氧化后409不锈钢在冷凝液中表现出良好的钝态腐蚀性能,但无论冷凝液中是否存在Cl-,钝化膜在氧化和腐蚀的循环作用下均会被破坏而形成局部腐蚀坑.Cl-存在时,蚀坑内不易形成保护性氧化膜,形成的蚀坑更深.  相似文献   

9.
在温度分别为20,40和70℃的2倍浓缩海水模拟溶液中,利用循环伏安曲线测试和SEM观察研究,对316不锈钢和超级不锈钢904L、254sMo以及2507的极化行为和表面点蚀形貌进行了研究。结果表明,在该环境中,升高温度可降低316、904L、254sMo和2507等4种不锈钢表面钝化膜的稳定性并提高其点蚀敏感性。在不同温度中,316不锈钢表面均发生严重点蚀损伤,而254sMo和2507不锈钢表面均无明显点蚀迹象。在低温时,904L不锈钢钝化膜击穿电位较高,点蚀坑尺寸较小,点蚀倾向较低;在高温时,其点蚀电位显著降低,点蚀坑尺寸明显增大,点蚀倾向较大。  相似文献   

10.
温度对316L不锈钢耐海水腐蚀性能的影响   总被引:1,自引:0,他引:1  
运用临界点蚀温度(CPT)、环状阳极极化曲线和电化学阻抗谱等方法研究了不同温度下316L不锈钢的海水腐蚀行为. 结果表明, 晶粒尺寸不同的两种316L不锈钢的CPT基本相同; 随着海水温度升高, 点蚀电位和再钝化电位均呈线性降低, 但是细晶钢的点蚀性能下降更大, 85℃时粗晶钢比细晶钢的点蚀电位约高60 mV. 与粗晶钢相比, 细晶钢在65℃下形成的钝化膜微缺陷更多, 且点蚀诱导时间较短.  相似文献   

11.
魏欣  董俊华  佟健  郑志  柯伟 《金属学报》2012,(5):502-507
通过循环极化曲线、Mott-Schottky曲线以及电化学阻抗谱等方法研究了温度对Cr26Mol超纯高铬铁素体不锈钢在3.5%NaCl溶液中耐点蚀性能的影响.结果表明:随着温度升高,Cr26Mol超纯高铬铁素体不锈钢的自腐蚀电位降低,腐蚀电流密度增大,点蚀电位下降,钝化膜阻抗降低.Cr26Mol不锈钢钝化膜的半导体类型和性质在不同温度下发生改变.Cr26Mol不锈钢发生点蚀的孕育期随着温度的升高而缩短,点蚀敏感性增加,已发生点蚀的试样不能够自修复.  相似文献   

12.
魏欣  董俊华  佟健  郑志  柯伟 《金属学报》2012,(4):502-507
通过循环极化曲线、Mott-Schottky曲线以及电化学阻抗谱等方法研究了温度对Cr26Mo1超纯高铬铁素体不锈钢在3.5%NaCl溶液中耐点蚀性能的影响.结果表明:随着温度升高,Cr26Mo1超纯高铬铁素体不锈钢的自腐蚀电位降低,腐蚀电流密度增大,点蚀电位下降,钝化膜阻抗降低.Cr26Mo1不锈钢钝化膜的半导体类型和性质在不同温度下发生改变.Cr26Mo1不锈钢发生点蚀的孕育期随着温度的升高而缩短,点蚀敏感性增加,已发生点蚀的试样不能够自修复.  相似文献   

13.
采用极化曲线和电化学阻抗谱研究了消声器用409不锈钢在不同pH冷凝液中的腐蚀行为,并用X射线光电子能谱(XPS)分析了pH对409不锈钢钝化膜化学组成的影响。结果表明,试样在冷凝液pH为2时处于活化腐蚀状态,而冷凝液pH不低于3时处于钝化状态;在酸性条件下钝化膜富含铬的化合物、缺陷较多,试样腐蚀阻力相对较小,而在中/碱性条件下钝化膜富含铁的化合物、缺陷较少,试样腐蚀阻力较大。  相似文献   

14.
拉应力对2205双相不锈钢耐点蚀性能的影响   总被引:1,自引:1,他引:0  
张东海  刘睿  程从前  赵杰 《表面技术》2016,45(3):12-16,126
目的探究分别在40℃和60℃下,拉应力与2205双相钢耐点蚀性能的关系。方法分析2205双相不锈钢在施加0、140、540 MPa三种拉应力的条件下,于临界点蚀温度以下(40℃)和临界点蚀温度附近(60℃)的3.5%Na Cl溶液中的动电位极化行为,并对比了不同拉应力对2205双相钢阻抗特性的影响。结果动电位极化曲线表明,140 MPa下点蚀电位稳定,40、60℃下击破电位分别为0.7、0.8 V;540 MPa拉应力使双相钢点蚀电位从无应力时的0.9 V下降至0.3 V。阻抗分析表明,40℃时所有样品均为单一阻抗特征,且阻抗值较大,应力会降低阻抗值。在60℃、开路电位条件下,0、140 MPa拉应力时具有较高阻抗,540 MPa拉应力时为具有点蚀萌生的阻抗弧;在60℃、600 m V偏压条件下,0、540 MPa拉应力时呈现点蚀阻抗特征,而140 MPa时阻抗仍较高。阻抗谱等效电路拟合结果结合不锈钢表面微观形貌表明,在40℃溶液中,OCP及600 m V偏压下试样表面均没有发生点蚀,应力对钝化膜电阻Rp没有明显影响,阻抗值为30 000Ω·cm2左右。温度升高至60℃后,钝化膜阻值明显降低;开路电位、540 MPa应力条件下不锈钢发生点蚀,阻抗值由0 MPa下的20 000Ω·cm2左右降到10 000Ω·cm2左右;在600m V偏压下,0、540 MPa拉应力时均发生点蚀,而140 MPa时均未发现点蚀。结论在40℃和60℃,140MPa拉应力可以抑制2205双相钢的点蚀,540 MPa拉应力则加速点蚀的发生。  相似文献   

15.
304不锈钢在稀盐酸中的电化学腐蚀行为   总被引:1,自引:0,他引:1  
采用电化学阻抗谱、极化曲线等测量方法研究了304不锈钢在不同浓度、浸泡时间下的腐蚀电化学行为。测定结果表明:304不锈钢在浓度0.3 mol/L的盐酸溶液中阻抗谱出现两个时间常数,极化曲线中钝化区变窄,钝化膜破裂,其金属表面发生点蚀。随浸泡时间延长,不锈钢耐腐蚀性降低。  相似文献   

16.
采用极化曲线,电化学阻抗谱和Mott-Schottky曲线研究了不同时效温度下,13Cr15Ni4Mo3N高强不锈钢在3.5%NaCl溶液中形成的钝化膜性能。结果表明:相同时效时间下,随时效温度升高,于350~625℃温度区间,点蚀电位先降低后升高。电化学阻抗结果表明:随时效温度升高或时效时间延长,钝化膜的致密性先降低后升高。Mott-Schottky曲线计算表明:钝化膜缺陷扩散系数随时效温度升高先增加后减小,表面钝化膜的稳定性随时效温度先降低后升高,与极化曲线、电化学阻抗谱测试结果一致。  相似文献   

17.
模拟水中十二烷基苯磺酸钠对不锈钢的缓蚀作用   总被引:2,自引:0,他引:2  
利用电化学阻抗谱、极化曲线和Mott-Schottky图研究了十二烷基苯磺酸钠(SDBS)在含硫离子和氯离子的模拟水中对不锈钢电极的缓蚀性能。结果表明,在含硫离子的模拟冷却水中加入SDBS可以使不锈钢电极的阻抗值增大,点蚀电位提高,不锈钢钝化膜的载流子浓度减小,SDBS有效地提高了不锈钢在含硫离子水体中的耐蚀性能。模拟水中氯离子浓度的增加使不锈钢电极的点蚀电位下降,点蚀敏感性增加,加入SDBS后不锈钢电极的点蚀电位提高,甚至出现过钝化,SDBS抑制了模拟水中氯离子对不锈钢的侵蚀。  相似文献   

18.
采用极化曲线和电化学阻抗法,研究了时效处理温度对254SMo奥氏体不锈钢在3.5 g/L的NaCl溶液中电化学腐蚀特性的影响。并借助光学显微镜(OM)、扫描电子显微镜(SEM)和能谱仪(EDS)表征其显微组织,探讨了析出物对腐蚀性能的影响。结果表明,随着试验钢时效温度的升高,腐蚀速率先增大后减小,1000℃速率最大,1050℃速率和800℃相近;析出物先增多后减少,到1050℃时超过了σ相的析出温度,故析出物减少。时效析出的金属间化合物σ相是导致254SMo不锈钢电化学腐蚀性下降的主要因素。  相似文献   

19.
综合运用动电位扫描极化曲线和动电位电化学阻抗谱研究了不同时效温度下AM355半奥氏体沉淀硬化不锈钢在3.5%(质量分数)Na Cl溶液中的点蚀行为。极化曲线的结果表明,时效时间均为4 h时,时效温度为350℃的点蚀电位Eb100最高,在动电位扫描极化曲线反向扫描过程中,均未出现保护电位Ep,钢表面产生蚀孔后再钝化能力较差。实验结果显示,时效温度会影响合金元素分布,析出相变化与点蚀电位成反比,到一定温度后,点蚀电位与残余奥氏体变化同步。  相似文献   

20.
采用极化曲线和电化学阻抗谱研究了硝酸温度和含量对304不锈钢耐蚀性能的影响。结果表明,在钝化电位下,304不锈钢在硝酸溶液中的阻抗呈现容抗特征,阻抗值达到104Ω·cm2,形成的钝化膜致密完整,随着温度的升高,阻抗值和相位角都减小,局部腐蚀加剧。高温和高含量均会促进钝化膜的溶解,进而加速304不锈钢在硝酸中的腐蚀。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号