首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
原位聚合制备PANI/GO复合材料及其电化学性能研究   总被引:1,自引:0,他引:1  
阮艳莉  王坤  齐平平  韩煦 《功能材料》2015,(2):2100-2104
利用原位化学氧化聚合的方法制备了聚苯胺/氧化石墨烯(PANI/GO)复合材料。通过X射线衍射(XRD)、扫描电镜(SEM)及红外光谱(IR)等方法对其结构和形貌进行了表征。利用自制的PANI/GO复合材料作为电极材料分别组装了超级电容器及锂离子电池,并对其电化学性能进行了测试。结果表明,GO在不同的电化学器件中均能够明显改善PANI的电化学性能。以PANI/GO作为超级电容器电极材料,放电时其比电容达413.28F/g,高于纯PANI的322.56F/g,1 000次循环后,容量保持率为70%。以PANI/GO作为锂离子电池正极材料,0.1C下首次放电比容量达104.4mAh/g,50次循环后,容量未见衰减。  相似文献   

2.
片状聚吡咯/氧化石墨烯复合材料的制备及电化学性能   总被引:1,自引:0,他引:1  
通过原位聚合在低温条件下(-10℃)制备具有片状微结构的聚吡咯(PPy)/氧化石墨烯(GO)复合材料,利用傅里叶红外光谱仪(FT-IR),扫描电子显微镜(SEM)对复合材料进行结构表征的基础上,利用循环伏安(CV)、恒流充放电(GC)、电化学阻抗技术(EIS)测试复合材料的电化学性能。FT-IR结果表明复合材料中GO与PPy存在相互作用;SEM结果表明复合材料显示为亚微米片状结构形貌;CV、GC、EIS电化学分析表明,与纯聚吡咯及氧化石墨烯相比,复合材料显示出优越的电容特性。当电流密度保持在1 A/g时,复合材料的比电容可达319 F/g,比GO(9 F/g)和PPy(167 F/g)的比电容都要高,该复合材料可用作潜在的超级电容器电极材料。  相似文献   

3.
具有较高电化学性能的一种新型多孔碳化的聚苯胺包覆碳纳米管电极材料被成功的制备,它是先通过原位聚合形成聚苯胺包覆碳纳米管复合材料,然后在氩气条件下850℃碳化制得的。该电极材料在0.5A.g-1电流密度下和1mol/L H2SO4电解液中拥有209F.g-1的比电容,远高于相同条件下碳纳米管的比电容20F.g-1。这应该归因于该电极材料比表面积的提高和来自碳化聚苯胺层中氮原子掺杂诱导的赝电容效应,同时也说明了该材料在超级电容器应用中是一种比较有希望的电极材料。  相似文献   

4.
采用SU-8光刻胶为前驱体,控制转速在硅基上均匀旋涂SU-8胶薄膜,采用不同碳化温度制得微型微机电系统(MEMS)超级电容器多孔碳电极材料。研究结果表明:在碳化温度为900℃的条件下,制得的MEMS超级电容器多孔碳电极材料的孔隙结构发达、导电性较好,0.5mA/cm~2电流密度下比电容可达49.3mF/cm~2,在超级电容器电极材料领域具有较好的市场前景。  相似文献   

5.
电极材料是决定超级电容器性能的主要因素,因此,合成具备特定形貌、组成以及性能优异的电极材料是构建高性能超级电容器的关键。从酒糟中提取植物纤维素,再通过冷冻干燥和热碳化处理,制备具有乱层石墨结构的纤维素碳气凝胶功能材料,并将其应用于超级电容器。研究结果表明,最优碳化温度700 ℃下制备的纤维素碳气凝胶作为电极材料,在浓度为6 mol/L的 KOH溶液和1 A/g的电流密度下,其比电容为183.5 F/g;而且该电极材料在20 A/g高电流密度下,仍保持90.0 F/g的比电容,展现出优异的倍率性能。交流阻抗拟合结果表明,CA-700组装的超级电容器界面传质电阻和扩散电阻分别为0.2829 Ω和5.7210 Ω;CA-700展现出较低的传质、扩散阻力和优异的电化学储能特性。  相似文献   

6.
近年来,废弃碳纤维复合材料数量急剧增加,对人类的生存环境造成了严重破坏。为了实现废弃复材中树脂的高值化利用,本研究采用一步碳化法制备了废弃树脂基碳材料,研究了碳化温度对碳材料结构与性能的影响,并将碳材料制备成超级电容器电极,研究电极的电化学性能。分别采用扫描电子显微镜(SEM)、比表面积测试仪、傅里叶红外光谱仪(FTIR)、X射线光电子能谱(XPS)、拉曼测试仪(Raman)、差示扫描量热仪(DSC)和热重分析仪(TGA)对碳材料的表面形貌、孔性能、化学组分、石墨化程度以及形成原理进行了分析。结果表明:当碳化温度为800℃时制备的碳材料具有分级多孔的结构,孔性能和石墨化程度达到最佳,所制备的超级电容器电极表现出优异的电化学性能,在1 A/g电流密度下比电容高达299 F/g,经10 000次充放电循环后,比电容仍高达296.6 F/g,循环稳定性优异。  相似文献   

7.
通过三聚氯氰(TCT)与对苯二胺(PPD)反应,成功合成了基于三嗪结构制备的微孔聚合物,然后在700~1000℃的环境下对微孔材料进行煅烧。结果表明,经900℃碳化的N-CTF-900样品的电化学性能最好,当电流密度为1A/g时,比电容为264.2F/g。经过10000次充放电循环,电容保持率达91.0%,展示出良好的循环稳定性和倍率性能,可作为超级电容器的电极材料。此外,随着碳化温度的升高,样品的碳化程度、电导率、孔隙率和微孔体积均增大。  相似文献   

8.
刘科  钟志成  曹静 《功能材料》2020,(1):1160-1164
柔性超级电容器作为一种储能器件,具有功率密度高、充电时间短、循环寿命长、比电容高等优点,可满足可穿戴器件的需求,而柔性电极材料是决定柔性超级电容器发展的关键因素,它决定着电容器的主要性能指标。采用混纺的方法制备了碳纤维含量为20%(质量分数)的碳纤维/棉纤维混纺纱线,然后通过电化学沉积法在碳纤维/棉纤维混纺纱线上生长聚吡咯颗粒,成功制备了20%(质量分数)碳纤维/棉纤维/聚吡咯柔性复合材料。利用扫描电子显微镜、拉曼光谱分析仪和电化学工作站研究了复合材料的形貌、聚吡咯沉积情况以及复合材料的电容性能。结果表明,20%(质量分数)碳纤维/棉纤维/聚吡咯柔性复合材料中,聚吡咯颗粒直径为30~60 nm,且沉积均匀,化学活性较高;在1.02 mA/cm^2电流密度下,复合材料的最大比电容达到1.28 F/cm^2,其高比电容归因于电极的独特结构;复合材料具有良好的柔韧性、机械稳定性和充放电循环寿命,其经过6000次弯曲循环后,电容保持率仍有80%以上,可以用作柔性可穿戴超级电容器的电极材料。  相似文献   

9.
利用以苯胺与过硫酸铵制备的聚苯胺和改进的Hummers法制备的氧化石墨烯(GO)为原料,将聚苯胺分散于GO浊液中,再对GO进行还原,制备超级电容器电极材料石墨烯(RGO)/聚苯胺(PANI)复合材料(GRP),利用X射线衍射(XRD)对其结构进行了表征,并对复合材料电化学性能进行了测试。结果表明,复合材料展示良好比电容特性,同时又具有稳定电化学性能。GRP在0.1A/g的电流密度下比电容达到510F/g,1.0A/g电流密度下比电容为485F/g,经过2000次的充放电循环后比电容保持率为92%,即复合物比电容远大于石墨烯,在化学稳定性上远好于PANI。放电响应效率高,在电极中电解质离子容易扩散和迁移。  相似文献   

10.
由于制备方法简单并且原料易得, 多孔碳合成广泛采用生物质材料, 并用于能源存储。以天然生物质棉花作为碳源, 通过简单的一步法制备得到氮掺杂多孔碳材料。这种多孔碳材料在碳化温度为750℃时具有480 m2/g的比表面积和6.84%的高含氮量。当用作超级电容器电极材料时, 这种碳材料显示出了良好的电容性能。在1 mol/L硫酸电解液中, 电流密度为1 mol/L时, 比电容可以达到252 F/g, 并且在循环10000圈之后仍能保留94%的原电容。这种低成本的棉花基碳材料为超级电容器应用提供了可能。  相似文献   

11.
用改良的Hummers法制备出氧化石墨烯(GO),再通过溶液共混,逐步升温固化制备得到GO/呋喃树脂复合材料。利用FTIR、XRD和SEM对GO/呋喃树脂复合材料的微观结构和形貌进行表征,同时对其黏度、玻璃化转变温度、热分解温度、残炭率及硬度进行了检测。结果表明,GO较均匀地分散于呋喃树脂基体中,且两者界面相容性较好。GO/呋喃树脂复合材料的热性能和力学性能相对于纯树脂都有一定的提高。与纯呋喃树脂相比,当GO的添加量为0.3wt%时,GO/呋喃树脂复合材料的玻璃化转变温度提高了36℃,热失重5%时的温度提高了16℃;当GO的添加量为0.1wt%时,GO/呋喃树脂复合材料的残炭率从50.7%提高到53.9%,邵氏硬度从90提高到97。  相似文献   

12.
氧化石墨烯(GO)是石墨烯重要的衍生物之一,通过氧化和超声波分散制备了GO纳米片/环氧树脂复合材料。采用XRD、拉曼光谱、FTIR和TEM表征了GO纳米片的结构与形貌,研究了GO纳米片用量对GO纳米片/环氧树脂复合材料热稳定性、力学性能及介电性能的影响。结果表明:GO纳米片的加入提高了GO纳米片/环氧树脂复合材料失热稳定性;随着GO纳米片填充量的增加,GO纳米片/环氧树脂复合材料的冲击强度和抗弯性能先提高后降低,其介电常数和介电损耗则先减小后增加。GO纳米片填充量为0.3wt%的GO纳米片/环氧树脂复合材料的失重5%时的热分解温度由纯环氧树脂的400.2℃提高到424.5℃,而冲击强度和弯曲强度分别在GO纳米片填充量为0.2wt%和0.3wt%时达到最大,冲击强度由纯环氧树脂的10.5kJ/m2提高到19.7kJ/m2,弯曲强度由80.5 MPa提高到104.0 MPa。  相似文献   

13.
以1,4-双(4-氨基-2-三氟甲基苯氧基)苯(6FAPB)和3,3',4,4'-二苯醚四酸二酐(ODPA)为合成聚酰亚胺(PI)的单体,首先采用原位氨基化方法使氧化石墨烯(GO)与6FAPB反应转变为原位氨基化GO,再与ODPA和剩余的6FAPB发生聚合反应得到原位氨基化GO/聚酰胺酸(PAA)溶液。涂膜后,经热酰亚胺化制备出GO质量分数分别为0.05wt%、0.1wt%、0.3wt%、0.5wt%和1.0wt%的原位氨基化GO/PI复合材料膜。利用FTIR、XPS、XRD、UV-vis、TGA、TMA、SEM、拉伸性能测试及接触角测试对原位氨基化GO/PI复合材料的结构和性能进行表征。结果表明,原位氨基化使GO以化学键与PI大分子链连接,有利于GO在复合材料基体中的稳定和均匀分散。XRD结果表明,所得到的原位氨基化GO/PI复合材料膜均为无定型结构。随GO质量分数增加,原位氨基化GO/PI复合材料薄膜的光学透明性急剧降低,但力学性能和热稳定性有一定提高。当GO的质量分数为1.0wt%时,原位氨基化GO/PI复合材料的拉伸强度由64 MPa增加到83 MPa,杨氏模量由1.67 GPa提高到2.10 GPa,10%热失重温度由593℃增加到597℃,玻璃化转变温度变化不大。由于热酰亚胺化后GO表面的大部分含氧官能团消失,原位氨基化GO/PI复合材料膜的吸水率由0.86%降低至0.58%,水接触角由72.5°增加到77.8°。  相似文献   

14.
在对含乙烯基聚硅氮烷(PSN1)树脂基本性能研究的基础上,以石英纤维布为增强材料,利用层压法制备了石英纤维布/含乙烯基聚硅氮烷耐高温透波复合材料(QF/PSN1),并对其在室温和高温下的力学性能及介电性能进行了测试与表征。研究结果表明:PSN1树脂工艺性能良好,黏度低于1 Pas(60~151℃),固化温度小于200℃;耐热性能优异,在N2和空气氛围下,其固化物失重5%时的温度均高于480℃、800℃时的残重均高于76%。QF/PSN1复合材料力学性能优异,弯曲强度和层间剪切强度随温度升高出现先下降后上升的趋势;450℃烘烤10 min后,其弯曲强度仍在120 MPa以上。QF/PSN1复合材料介电性能优异:在1~12 GHz范围内,QF/PSN1复合材料在室温~450℃范围内介电常数(ε)均低于3.2,介电损耗(tanδ)均小于0.01。上述研究结果表明:含乙烯基聚硅氮烷作为耐高温透波材料的新型树脂基体具有重要的应用价值。   相似文献   

15.
通过差示扫描量热(DSC)法研究了9518氰酸酯的固化反应,制定了9518氰酸酯的固化工艺;通过动态热机械分析(DMA)测试、力学性能测试、金相显微镜和SEM等方法研究了T800碳纤维/9518氰酸酯复合材料的受热行为、力学性能、纤维微观形貌和界面特性。结果表明:9518氰酸酯的固化反应只有一个固化反应放热峰,其比较合理的固化工艺为130℃/0.5 h+160℃/0.5 h(加压合模)+200℃/2 h+230℃/2 h。T800碳纤维/9518氰酸酯复合材料的玻璃化转变温度为255℃,其各项力学性能比T700碳纤维/9518氰酸酯复合材料提高均大于10%,室温-湿态力学性能保持率大于83%,200℃的力学性能保持率大于60%。T800碳纤维不规则的截面和表面沿长度方向的沟槽有利于树脂与纤维间形成良好的结合界面。  相似文献   

16.
采用水热法合成聚糠醇(PFA),探究了表面活性剂聚乙烯吡咯烷酮(PVP)添加量和反应时间对PFA微观形貌的影响。将改进Hummers法制备的氧化石墨烯(GO)对PFA、泡沫Ni进行包覆,探讨了PFA模板与GO不同质量比的包覆效果。去模板后成功构筑三维大孔石墨烯(3D rGO),3D rGO再经KOH活化获得三维多级孔石墨烯(3D PrGO),3D PrGO经与聚苯胺(PANI)原位复合获得3D PrGO/PANI复合材料。采用XRD、SEM、TEM、FTIR、XPS和比表面(BET)分析法对材料的物相组成、微观结构、形貌、比表面和孔径进行表征,采用循环伏安、恒流充放电、电化学阻抗谱分析了3D PrGO/PANI复合材料的电化学性能。结果表明:通过控制糠醇、PVP及水的比例,在180℃水热反应24 h成功制备了球径在500 nm左右的PFA微球。在PFA与GO质量比为1∶1时包覆效果最佳。450℃热处理6 h成功去除PFA模板并形成400~600 nm左右的大孔,经KOH活化后,在3D PrGO上形成介孔结构。3D PrGO/PANI复合材料在0.5 A/g电流密度下比电容为433 F/g,在1 A/g下1 000次循环充放电之后,3D PrGO/PANI复合材料的比电容保留率为75%,高于纯PANI的69%。   相似文献   

17.
为研究氧化石墨烯(GO)对共混橡胶的补强改性作用,首先,通过改进的Hummers方法制备了GO,并通过乳液共混法制备了GO/天然橡胶(NR)-丁腈橡胶(NBR)复合材料;然后,采用SEM、FTIR、XRD、溶胀测试和力学性能测试表征了GO、NR-NBR硫化胶和GO/NR-NBR复合材料的微观形态、结构和力学性能。结果表明:所得GO含有大量的含氧官能团,氧化效果较好;橡胶基体中GO分散均匀,且GO/NR-NBR复合材料的拉伸断面粗糙程度显著增加;GO的填充可以提高复合材料的表观交联密度;GO/NR-NBR复合材料的力学性能随着GO含量的增加而改善,当GO含量为3.0wt%时,GO/NR-NBR复合材料的拉伸强度、100%定伸应力和邵氏A硬度分别提高了53.3%、67.3%和10.5%,断裂伸长率降低了9.6%。   相似文献   

18.
以吡咯为单体,多壁碳纳米管和氧化石墨烯为模板,过硫酸铵为氧化剂,采用原位化学聚合法制备了聚吡咯/多壁碳纳米管/氧化石墨烯(PPy/MWNTs/GO)复合材料.利用傅里叶变换红外光谱(FTIR)、X射线衍射谱(XRD)、扫描电镜(SEM)、循环伏安法(CV)和电化学交流阻抗谱(EIS)对制备复合材料的结构、微观形貌和电化学性能进行了研究,探讨了多壁碳纳米管/氧化石墨烯比例、吡咯用量对复合材料电容性能的影响.研究结果显示,PPy/MWNTs/GO复合材料具有较大的比电容和良好的循环稳定性,且具有较小的电荷转移电阻,接近于理想的超级电容器用电极材料.  相似文献   

19.
采用湿法预浸技术和模压工艺制备了氧化石墨烯(GO)改性碳纤维/环氧树脂(CF/EP)复合材料,研究了 GO在室温干态及湿热处理后对CF/EP复合材料动态热力学性能和层间剪切性能的影响,并通过微观形貌分析了复合材料的改性机制.结果表明,当GO添加量分别为0.5%和0.8%时,GO-CF/EP复合材料的玻璃化转变温度(Tg...  相似文献   

20.
利用硅烷偶联剂(APTES)对氧化石墨烯(GO)进行功能化改性, 在不同的试验条件下制备了3种硅烷偶联剂功能化GO(APTES-g-GO)纳米填料, 并经熔融共混制备了APTES-g-GO填充改性的聚苯乙烯(PS)复合材料。为了改善复合材料的界面作用, 采用马来酸酐接枝乙烯-辛烯共聚物(POE-g-MAH)为增容剂。分别采用FTIR、XRD、TG、SEM以及拉伸和冲击测试对填料和纳米APTES-g-GO/POE-g-MAH/PS复合材料的结构和性能进行了表征和测试。结果表明:APTES已成功接枝于GO的表面上。接枝过程中, APTES对GO有一定的剥离和还原作用。随着填料含量的增加, 纳米APTES-g-GO/POE-g-MAH/PS复合材料拉伸强度和冲击强度均先上升后下降。当填料与基体质量比为0.75%时, 3种复合材料的拉伸强度和冲击强度都达到最大值, 其中纳米AS-GO/POE-g-MAH/PS复合材料的综合性能最好, 其拉伸强度和冲击强度比POE-g-MAH/PS分别提高了19%和 31%。共混过程中, APTES-g-GO与POE-g-MAH之间的反应改善了纳米APTES-g-GO/POE-g-MAH/PS复合材料的界面相互作用。APTES-g-GO均匀分散于复合材料中, 它的加入提高了复合材料的热稳定性能。添加AS-GO填料的复合材料热稳定性能提高最为明显, 含0.75% AS-GO的纳米AS-GO/POE-g-MAH/PS复合材料的最大失重温度比POE-g-MAH/PS提高了7 ℃。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号