首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
陈奕琨  赵昕  李庆华 《工程力学》2023,(S1):289-294
为研究滨海盐雾环境下超高韧性水泥基复合材料(UHTCC)的动态压缩力学性能,对2组不同腐蚀程度的UHTCC(腐蚀周期为0 d和60 d)开展3组不同应变率(10-4 s-1、10-3 s-1和10-2 s-1)的动态压缩力学试验,获得了材料的动态压缩应力-应变曲线和破坏形貌,分析了应变率对不同腐蚀程度的UHTCC弹性模量、峰值强度以及峰值应变的影响。结果表明:相比于未腐蚀试件,60 d盐雾干湿循环作用会导致UHTCC动态压缩强度分别提高44.5%、54.4%和62.4%,动态弹性模量分别提高19.4%、15.3%和28.4%,压缩强度的应变率敏感性上升。通过X射线电子计算机断层扫描(XCT)技术发现盐雾干湿循环环境下材料的孔隙率降低,微观结构变得更加密实。  相似文献   

2.
针对保留围岩在爆炸荷载下的稳定性问题,基于SHPB、二波分析和分形理论等,对不同应变率加载下云南某矿区结晶灰岩的应力-应变曲线、破碎形态、分型维数及能量耗散特性开展相关研究。试验结果表明:应变率为49.64 s-1时,岩石试件破坏模式主要为轴向劈裂破坏;应变率为87.05 s-1时的破坏模式为劈裂-剪切组合破坏;在动态抗压强度方面,随着应变率的增加岩石的动态抗压强度与之呈明显的线性正相关关系,与静态抗压强度相比,动态强度增长因子由1.19增长至2.86;随着应变率增加,分形维数表现出逐渐增大的规律,应变率在30.37~138.18 s-1时,Df值从1.96增加至2.23,但随着应变率的增加Df最终趋于某一阈值;耗能密度随入射能量呈指数增长。研究结果提供了不同应变率冲击荷载下结晶灰岩的动态破碎和耗能规律,为此类矿区安全高效的爆破施工及类似工程设计提供依据。  相似文献   

3.
使用Gleeble-3800热模拟试验机对TA5钛合金进行等温恒应变速率压缩,研究其在变形温度为850~1050℃、应变速率为0.001~10 s-1和最大变形量为60%条件下的高温热变形行为;建立了引入物理参量的应变补偿本构模型,并根据DMM模型得到了加工图。结果表明:TA5钛合金为正应变速率敏感性和负变形温度相关性材料;考虑物理参量的应变补偿本构模型具有较高的预测精度,其相关系数R为0.99,平均相对误差AARE为8.95%。分析加工图和观察微观组织,发现失稳区域(850~990℃,0.05~10 s-1)的主要变形机制为局部流动;稳定区域(870~990℃,0.005~0.05 s-1)的主要变形机制为动态回复和动态再结晶。TA5钛合金的最佳热加工工艺参数范围为870~990℃和0.005~0.05 s-1。  相似文献   

4.
中应变率加载下云杉各向异性力学行为研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用高速加载INSTRON设备对云杉开展100 s-1~102 s-1中应变率压缩实验,研究了材料沿顺纹、横纹径向、弦向、以及径(弦)切面内与顺纹呈15°、30°、45°、60°和75°夹角方向的力学性能。实验表明随着加载方向由顺纹向横纹径(弦)向变化,材料屈服强度逐渐减小,应力-应变曲线塑性流动段由\  相似文献   

5.
该文采用Ф80 mm的分离式霍普金森压杆装置,研究了纳米改性后的UHTCC(ultra high toughness cementitious composites)在高速冲击压缩应力状态下的力学响应,并与常规UHTCC材料、钢纤维混凝土进行了对比。试验得到了各组材料在准静态和动态共计4组应变率(2.36×10-5 s-1、120 s-1、160 s-1、200 s-1)下的准静态压缩强度及冲击压缩应力-应变曲线,并计算了各组试件的耗能能力。为了进一步优化材料的抗冲击性能,该文还研究了纳米改性后的UHTCC基体中钢纤维和PVA纤维的混杂效果。试验结果表明:5组材料均具有应变率敏感性,峰值应力和耗能能力随着应变率的增大而上升;经过纳米改性后的UHTCC材料冲击压缩力学强度及耗能能力明显提高;在冲击荷载下,钢纤维和PVA纤维产生正混杂效应,提高钢纤维掺量可以强化UHTCC的抗冲击能力;应变率的大小和钢纤维的掺量之间的关系影响了动态峰值应力的提升。  相似文献   

6.
使用热模拟试验机获得10Ni8CrMoV钢热影响区类似组织,通过霍普金森压杆试验对热影响区试样的动态力学行为进行表征,并观察其微观组织。结果表明:在高应变速率下,热影响区真实应力随着应变率的增加而增加,表现出明显的应变率强化效应;应变速率为2 000 s-1时,试样中出现大量的变形孪晶,应变速率为4 000 s-1时,试样被剪切破坏;基于Johnson Cook模型,得到10Ni8CrMoV钢热影响区动态本构模型。  相似文献   

7.
为了确定TiC/Cu-Al2O3复合材料的动态再结晶行为,为热加工工艺参数的制定提供理论参考。采用Gleeble-1500D热模拟试验机,在变形温度450~850℃、应变速率0.001~1 s-1、总应变量为0.7的条件下,对TiC/Cu-Al2O3复合材料进行热模拟试验。对TiC/Cu-Al2O3复合材料的真应力-应变曲线数据进行拟合、分析,求得材料的加工硬化率。结合加工硬化率-应变曲线的拐点和对应偏导曲线最小值的判据,研究了该复合材料动态再结晶临界条件。结果表明:TiC/Cu-Al2O3复合材料的真应力-应变曲线主要以动态再结晶软化机制为特征,峰值应力随变形温度的降低或应变速率的升高而增加;该材料的加工硬化率-应变曲线出现拐点,对应偏导曲线出现最小值;临界应变随变形温度的升高与应变速率的降低而减小,且临界应变与峰值应变以及Zener-Hollomon参数之间具有相关性。  相似文献   

8.
对45个高强混凝土(HSC)棱柱体进行高温加热,温度分别为20℃、200℃、400℃、600℃和800℃。然后对棱柱体进行高温后轴向动态受压试验,应变率分别为10-5 s-1、10-3 s-1和0.067 s-1。结果表明:随着经历温度的升高,HSC将会出现裂缝,细观结构变得松散;高温对HSC造成的损伤随温度的升高而增大,而应变率对高温后HSC的损伤没有明显影响;经历相同的高温损伤后,HSC的相对受压强度随应变率的增大而增大;轴向应变对高温后HSC造成的损伤在峰值应变前缓慢增大,达到峰值应变后迅速增大;温度越高,峰值应变对应的HSC损伤越小,而经历相同温度后不同应变率下峰值应变处HSC损伤的变化趋势并不明显。基于试验及理论分析,建立了HSC高温损伤以及高温损伤后相对受压强度的计算公式。  相似文献   

9.
基于显式有限元法建立了三维轮轨高速瞬态滚动接触模型,详细分析了车轮以300 km/h速度滚过平顺钢轨表面、钢轨波磨(波长30 mm~170 mm)和宏观粗糙度(波长4 mm~30 mm)时钢轨表层0.25 mm~0.5 mm厚材料的平均应变率水平。结果显示:1)空间上,表层单元的应变率最大,时间上,表层材料的最高应变率发生于其进出接触斑的加、减载过程,且法向应变分量的应变率最大,其最值是Von Mises(V-M)等效应变率最值的1.50倍~1.86倍;2)网格大小和时间步长对应变率估计有不可忽略的影响;3)采用0.5 mm网格和0.32 μs步长,平顺轮轨表层单元的最大V-M等效应变率为64.1 s-1,材料弹塑性无影响,波磨和宏观粗糙度使弹性下的最大V-M等效应变率分别增至92.5 s-1和79.4 s-1;采用0.25 mm网格和0.042 μs步长的结果约为上述值的1.65倍~1.88倍;4)最大V-M等效应变率随速度线性增加,随摩擦系数的增加而单调递增,牵引系数的影响可忽略。  相似文献   

10.
新型含铝奥氏体耐热合金(AFA)进行压缩热模拟试验,使用OM和EBSD等手段研究了这种合金在950~1150℃和0.01~5 s-1条件下的微观组织演变、建立了基于动态材料模型热加工图、分析了变形参数对合金加工性能的影响并按照不同区域组织变形的特征构建了合金的热变形机理图。结果表明:新型AFA合金的高温流变应力受到变形温度和应变速率的显著影响。在变形温度为950~1150℃和应变速率为0.18~10 s-1条件下,这种合金易发生流变失稳。在变形温度为1050~1120℃、应变速率0.01~0.1 s-1和变形温度1120~1150℃、应变速率10-0.5~10-1.5 s-1这两个区间,这种合金发生完全动态再结晶行为且其再结晶晶粒均匀细小,功率耗散因子η达到峰值45%。新型AFA合金的热加工艺,应该优先选择再结晶区域。  相似文献   

11.
制备了掺量为0.2%(以水泥质量为基准)的纳米Fe2O3(NF)、复掺纳米Fe2O3和纳米CaCO3 2种纳米材料(NFC)以及复掺纳米Fe2O3、纳米CaCO3和纳米SiO2 3种纳米材料(NFCS)的混凝土,之后采用直径100 mm分离式霍普金森压杆(SHPB)试验装置测试了养护龄期为28 d的3种混凝土在不同平均应变率等级下的动力特性并与普通混凝土(PC)进行对比研究。结果表明:准静态载荷下,复合纳米材料的掺入可有效调高混凝土的抗压强度;冲击载荷作用下,中低水平平均应变率时, NFC动态抗压强度最高, 80 s-1时NFC比PC高31.6%,高水平平均应变率下NF动态抗压强度具有优势,在125 s-1时, NF比PC高16%;NF在冲击载荷作用下峰值应变具有显著优势,具有良好的变形性能;以比能量吸收作为韧性评价指标,在平均应变率为75 s-1和125 s-1时, NF比PC增幅达到66.6%和75.7%。通过SEM照片分析,纳米Fe2O3颗粒增大了水泥石密实度,进而改善了NF的强度和韧性;由压汞试验分析,纳米CaCO3颗粒在混凝土中,改善了水泥石孔隙结构。   相似文献   

12.
应力-应变曲线对研究金属热变形过程中的加工硬化、动态再结晶和动态回复的变化具有重要的意义,而预测不同热变形参数下的应力-应变曲线有助于研究热加工过程中金属的可加工性和不稳定性。在应变速率为0.01~3 s^(-1)以及变形温度为1000~1200℃条件下,利用Gleeble-3500热模拟试验机对Nb-V-Ti微合金钢进行热压缩实验,研究了Nb-V-Ti微合金钢的热变形行为。建立BP神经网络模型和基于GA改进BP神经网络模型,分别预测在应变速率0.5 s^(-1)、变形温度1050℃和应变速率1 s^(-1)、变形温度1100℃条件下的流动应力行为并验证模型效果。研究结果表明:经GA改进后的BP神经网络模型对测试数据的应力-应变曲线与实验曲线具有很好的吻合,相关系数分别达0.99202和0.99734,误差仅为2.7816%和2.1703%,预测结果与实验结果相对误差在[-2,2]范围内,证明了模型的预测可靠性,且适用于较广的应变范围,为工业生产轧制工艺提供理论指导。  相似文献   

13.
在不同变形温度和应变速率条件下对2205双相不锈钢进行高温压缩实验,研究了变形温度、应变速率和变形量对其显微组织中铁素体和奥氏体两相的影响,分析了高温变形软化机制。结果表明:随着变形温度的提高这种钢的峰值应力及其对应的应变逐渐减小。随着变形温度从850℃提高到950℃,2205双相不锈钢显微组织中的铁素体向奥氏体的转变占主导地位;变形温度高于950℃时,随着变形温度的提高铁素体与奥氏体之间的强度水平之差逐渐减小,显微组织中的奥氏体向铁素体的转变占主导地位。在本文的热变形条件下2205双相不锈钢的显微组织中铁素体呈现出与奥氏体不同的软化机制,铁素体的软化机制为动态回复和动态再结晶,而奥氏体因层错能较低其软化只能通过有限程度的动态回复进行。  相似文献   

14.
采用真空热压-内氧化烧结法制备了TiC(30vol%)/Cu-Al2O3复合材料,测试其基本性能,对其微观组织进行了观察分析。利用Gleeble-1500D热力模拟试验机,在变形温度450~850℃、应变速率0.001~1s-1、变形量50%的条件下,对TiC(30vol%)/Cu-Al2O3进行了热压缩变形试验。通过对流变应力进行分析和计算,构建了该复合材料的本构方程及动态再结晶临界应变模型。利用加工硬化率-应变曲线的拐点和对应偏导曲线最小值的判据,建立了动态再结晶临界应变与Zener-Hollomon参数之间的函数关系。结果表明:TiC(30vol%)/Cu-Al2O3复合材料的真应力-真应变曲线以动态再结晶软化机制为特征,峰值应力随变形温度的降低或应变速率的升高而增加;计算得出该复合材料的热变形激活能为211.384kJ/mol。  相似文献   

15.
使用热模拟试验机在1123~1423 K/0.01~10 s-1变形条件下对18.5%对Cr高Mn节镍型双相不锈钢进行了变形量为70%的大变形热压缩,研究其在热变形过程中两相的亚结构特征和软化机理。结果表明,在0.01~0.1 s-1/1123~1223 K范围的热压缩软化以铁素体相的再结晶为主,而在0.1 s-1/1323~1423 K和10 s-1/1223 K范围的热压缩软化以奥氏体相的再结晶为主。在变形温度为1223 K、应变速率由0.01 s-1增大到10 s-1的条件下铁素体相内的位错缠结向胞状结构演化并出现位错线,奥氏体相内的亚结构则转变为细小的再结晶晶粒。应变速率为0.1 s-1、变形温度由1123 K提高到1323 K时铁素体相内的位错增加,变形晶粒向胞状组织演化而奥氏体相内的位错减少,由回复组织转变为再结晶组织。根据热变形方程计算出表观应力指数n=7.13,热变形激活能Q=514.29 kJ/mol,并建立了Z参数关系本构方程。根据加工硬化率得到再结晶临界条件,并确定了Z参数与再结晶临界条件的关系。对热加工图的分析结果表明,随着变形量的增大失稳区逐渐减小,最佳加工区域为1348~1423 K/1~10 s-1,功率耗散系数大于0.4。  相似文献   

16.
使用圆柱形TB6钛合金试样在Thermecmaster-Z型热模拟试验机上进行热模拟压缩实验(变形温度为825~1100℃,应变速率为0.001~1 s-1)。对采集的流变数据进行加工硬化率处理,确定动态再结晶体积分数,研究了TB6钛合金β区变形的动态再结晶动力学。结果表明,流变应力随着变形温度的降低或应变速率的提高而增大,流变曲线呈现出动态再结晶类型的特征。随着应变速率的降低和变形温度的提高,动态再结晶的体积分数和晶粒尺寸增大。在变形温度高于950℃、应变速率低于0.001 s-1条件下,动态再结晶的晶粒严重粗化。动态再结晶动力学曲线经历缓慢增加—快速增加—缓慢增加三个阶段,呈现出典型的“S”型特征。确定了动态再结晶的体积分数达到50%时的应变,建立了TB6钛合金的动态再结晶动力学模型。  相似文献   

17.
对TC2钛合金的高温变形行为进行了有限元模拟和热压缩实验研究,使用有限元自洽模型模拟提高流动应力曲线修正精度,分析材料的应力应变曲线特征,得到其高温流动本构方程和激活能,并进行了光学显微镜观察研究其微观组织演变规律,发现在高温低应变速率下α相的球化程度较高。绘制出TC2钛合金的功率耗散图和热加工图,结合应变速率敏感系数m研究了受m值控制的不同变形机制,最终确定了TC2钛合金的最佳加工窗口:(I)760~825℃、0.007~0.024 s-1;(II)850~900℃、0.018~0.37 s-1;(III)900~950℃、1~10 s-1,在此区间功率耗散因子较大,在材料变形过程中发生充分动态再结晶,试样的微观组织呈细小等轴状。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号