共查询到20条相似文献,搜索用时 0 毫秒
1.
针对膨胀土路基工程中膨胀土的改良问题,研究掺加粉煤灰对膨胀土的改良效果,基于室内土力学相关试验,分析不同粉煤灰掺量对膨胀土改良特性,得到粉煤灰改良膨胀土的抗压强度、胀缩特性及击实特性变化规律。研究结果表明:掺加粉煤灰能够显著改善膨胀土强度,随着粉煤灰掺量增加,膨胀土抗压强度逐渐增加,最大增幅约为39.18%,最优粉煤灰掺量约为30%;掺加粉煤灰有效降低膨胀土自由膨胀率、无荷膨胀率等胀缩性指标,最大降幅可达38%、35%;对于改良膨胀土的击实特性,随着粉煤灰掺量增加,最优含水量及最大干密度逐渐减小。 相似文献
2.
对粉煤灰改良膨胀土的改良成效及可行性进行了研究和分析,试验结果表明,随着粉煤灰掺量的增加,膨胀土的塑性以及活性指数、膨胀力、膨胀率乃至膨胀量都逐渐减小,由此表明粉煤灰可以有效对膨胀土浓缩性造成降低影响。经过一定养护期之后的膨胀试验结果表明,随着养护期限的不断递增,膨胀土的膨胀量及膨胀力会随之降低。没有经过养护的膨胀土无侧限抗压强度相对较不明显。在经由养护之后,路堤的土样抗压强度增加,且无侧限抗压强度存在峰值点。 相似文献
3.
通过超细粉煤灰水泥对膨胀土进行改良,研究了不同掺量超细粉煤灰水泥对膨胀土击实性能、自由膨胀率和力学性能的影响.研究结果表明:激发剂NaOH 一定时,随着超细粉煤掺量的增加,膨胀土的最大干密度及最优含水量逐渐降低;超细粉煤灰水泥的掺入可以有效改善膨胀土的自由膨胀率,当超细粉煤灰水泥掺量为12%时,与素膨胀土相比,其自由膨... 相似文献
4.
对膨胀土改良方法进行了研究,分别开展了粉煤灰改良方法和粉煤灰混合聚丙烯纤维改良方法的性能试验。通过试验结果发现,在膨胀土中添加一定量的粉煤灰能够有效抑制和减弱膨胀土的膨胀性能,随着粉煤灰添加量的增大,改良试样的膨胀率和膨胀力均减小。与单独添加粉煤灰改良方法相比,采用粉煤灰+聚丙烯纤维对膨胀土进行改良的方法的改良效果更佳。粉煤灰+聚丙烯纤维改良后土样的自由膨胀率、无荷膨胀率和膨胀力都明显比单独使用粉煤灰改良土样要低。粉煤灰混合聚丙烯纤维改良方法在膨胀土改良上将具有较好的应用前景。 相似文献
5.
6.
粉煤灰改良红壤试验研究 总被引:1,自引:0,他引:1
《粉煤灰综合利用》1991,(3):54-57
粉煤灰质地相当于砂壤土的机械组成,因此,在粘土质土壤上施用,可以疏松土壤,降低土壤容重,改善通气状况,提高土表温度,有改良土壤的效果。红壤在我省分布范围最广,总面积约1.62亿亩,占全省土地总面积的64.8%,红壤酸性强、有机质含量低,质地粘重,理化性状差,存在酸、瘦、板、粘等缺陷。如何改良和开发利用红壤资源,对发展我省农业生产有重大意义。我们进行了粉煤灰改良红壤和对作物影响的试验研究,现将试验结果分述如下: 相似文献
7.
本文针对河套灌区试点使用的水泥砂浆固化土材料为研究对象,通过不排水三轴压缩试验对水泥土的力学特性进行研究,重点分析了围压与掺砂对水泥土体强度、刚度的影响.试验结果表明,随着围压的增加,水泥砂浆固化土的强度与刚度均增加,与掺砂量的变化不构成比例关系;随着轴应变的增加,刚度总体呈现迅速增加后逐渐减少趋势;掺一定量的砂完善了固化土颗粒填充效应,有效改善土体的强度及刚度,但掺量不可以过多,本文还通过对水泥砂浆固化土微观结构的分析了解掺砂对水泥固化土的作用效应. 相似文献
8.
李金成 《合成材料老化与应用》2020,49(1):57-60
为解决吉林某地区优质路基填料不足,采用平行试验设计方法研究了油页岩废渣和粉煤灰复合改良黏土力学特性。研究表明,一定粉煤灰掺量复合改良土CBR、无侧限抗压强度随油页岩废渣掺量增加呈线性增长,每增加5%油页岩废渣掺量,CBR、抗压强度平均提高20%、13%;一定油页岩废渣掺量复合改良土CBR、无侧限抗压强度随粉煤灰掺量呈增加呈抛物线趋势变化,均在粉煤灰掺量25%处取得峰值;油页岩废渣掺量30%、粉煤灰掺量25%改良土内摩擦角在含水率11.8%处取得峰值,且含水率对其抗压强度影响显著,含水率10.8%、12.8%改良土内摩擦角分别约为含水率11.8%改良土内摩擦角的96%、95%,含水率每增加1%,各龄期改良土抗压强度平均降低23%。建议油页岩废渣、粉煤灰掺量分别为30%、25%,施工含水率为12.8%~13.8%。 相似文献
9.
为探究冻融循环作用对粉煤灰加固路基土力学性能影响,对冻融循环次数、含水率、粉煤灰掺量不同的盐渍土开展无侧限抗压试验和三轴剪切试验,研究冻融循环后土体的应力-应变曲线、无侧限抗压强度、黏聚力和内摩擦角的变化情况。使用Design-Expert 8.0软件,研究冻融循环次数、粉煤灰掺量、含水率及各因素交互作用对盐渍土力学性质影响的显著性程度。结果表明:多次冻融循环后,盐渍土无侧限抗压强度、黏聚力和内摩擦角均有下降,经历1~7次冻融循环时,土体各力学参数下降速率较快;随着粉煤灰掺量的增加,盐渍土的内摩擦角、黏聚力、无侧限抗压强度和抗剪强度呈现出先升高后下降的变化趋势。基于显著性分析理论,冻融循环次数与含水率的交互作用对盐渍土无侧限抗压强度和黏聚力的影响较为显著,粉煤灰掺量与冻融循环次数的交互作用仅对无侧限抗压强度影响较为显著。为提高路基土强度及抗冻融的能力,加快粉煤灰综合利用进度,根据软件和公式模拟结果,推荐在路基土中依据质量比掺加15%粉煤灰,并将经历7次冻融循环后压实盐渍土的力学指标作为工程设计参考值。 相似文献
10.
将含钙量较高的粉煤灰与普通粉煤灰相混合,进行相关的工程力学性质试验.试验结果表明:改良粉煤灰的最佳含水量、最大干密度与高钙粉煤灰的掺加比例呈线性相关关系;改良粉煤灰的无侧限抗压强度、水稳定性能够满足路基工程的要求,且具有一定的抗拉能力,其中压实度对改良粉煤灰的劈裂强度具有显著影响;改良粉煤灰的抗压回弹模量随压实度呈线性增大,一定龄期的改良粉煤灰压缩模量明显大于散粒体粉煤灰的压缩模量. 相似文献
11.
基于非饱和膨胀土工程病害处治及煤矸石固体废弃物资源化利用的社会需求,通过液塑限试验、击实试验、直剪试验,研究同时加入石灰和煤矸石膨胀土的工程性质变化,通过XRD检测,从各配比混合料的物相变化情况对其机理进行了分析.结果表明:石灰煤矸石膨胀土混合料的塑性、击实性、抗剪性能都得到改善,且优于石灰改良膨胀土.经XRD检测得到在膨胀土中掺加石灰和煤矸石后物相发生了变化,生成晶体结构较为稳定、晶粒较大的新物质钙长石和白云石,为膨胀土提供一定的CaO、MgO、SiO2和Al2O3等有效矿物成分,促使膨胀土的塑性、击实性等工程性质有所改善.因掺入石灰煤矸石比只掺石灰为膨胀土提供更多的有效矿物成分,因此石灰煤矸石优于石灰改良膨胀土的工程性质. 相似文献
12.
近来,有用硅酸盐型水泥和工业副产品及废料制取膨胀组分的趋势。这样可以简化膨胀水泥的组成,而不使其性能变坏,并可减小废料对周围环境的不良影响。由波特兰水泥和用高岭土制取硫酸铝时的固体残渣(废硫酸铝)组成的组份,凝结时间要求缓慢,所以在其组成中掺入热电站粉煤灰,其成分为(%):42.28SiO_2、25.12AI_2O_3、12.6Fe_2O_3、2.72CaO、1.07MgO、0.47SO_3、0.10MnO,烧失量为12.78。粉煤灰的物质组成为α一石英、莫来石、刚玉、磁铁矿和焦炭。在保持膨胀效果的条件下,采用了粉煤灰含量尽可能大的组分。膨胀粉煤灰水泥的最佳 相似文献
13.
14.
为保证膨胀土填料路用工程性质良好,选用铁尾矿砂处治膨胀土填料,并通过室内试验研究了铁尾矿砂改良膨胀土填料击实特性、膨胀特性、力学特性和水稳定性。结果表明,随掺砂率增大,铁尾矿砂改良膨胀土最大干密度逐渐提高,最佳含水率逐渐降低;随掺砂率增加,铁尾矿砂改良膨胀土膨胀性减弱,掺砂率增加10%,改良膨胀土自由膨胀率和膨胀力分别平均降低17.2%、22.2%;在掺砂率30%时,铁尾矿砂改良膨胀土力学特性和水稳定性最优,较素膨胀土水稳系数约提高16.1%。建议铁尾矿砂改良膨胀土最佳掺砂率为30%。 相似文献
15.
针对内蒙古锡盟地区粉煤灰堆存量大、利用率低以及当地土壤荒漠化严重等系列问题,本工作提出利用粉煤灰改良荒漠土壤的新思路。首先用硫酸对惰性的粉煤灰进行表面活化改性,采用SEM和XRD等分析测试手段研究粉煤灰结构变化,采用XPS和TG分析方法分别对粉煤灰表面羟基定性分析和定量计算,以期明晰粉煤灰表面羟基化效果;其次,使用改性前后粉煤灰分别作为土壤加固剂,以现场采集沙土为加固对象,研究改性粉煤灰对砂土稳定性的影响。结果表明,使用1.5 mol/L的硫酸溶液预改性后,颗粒表面羟基数量较原始粉煤灰增大4倍。按质量比1:9将酸改性前后的粉煤灰分别与沙土复配并静置15天后对复配土的力学强度进行测定,结果显示原始沙土间的黏聚力为0.29 kPa,改性前粉煤灰-沙土复配土的黏聚力为0.88 kPa,而改性后粉煤灰-沙土复配土的黏聚力提高到3.51 kPa。 相似文献
16.
<正>粉煤灰作为一种原料资源在水泥行业的应用力度不断增大,除用作生料配料和水泥混合材之外,以磨细粉煤灰作混凝土掺合料的独立粉磨系统和粉磨站也达到相当规模。GB/T1596—2005对用于水泥混合材和混凝土掺合料的粉煤灰按45μm筛余分为三个细度等级:Ⅰ级筛余≤12%,Ⅱ级筛余≤25%,Ⅲ级筛余≤45%。但实际生产中,因原料或者用户对产品 相似文献
17.
18.
刘涛 《合成材料老化与应用》2022,(6):93-95
为保证膨胀土路基力学强度和稳定性,通过室内及现场试验研究了石灰改良膨胀土力学特性及施工含水率。结果表明,膨胀土掺入石灰后,最大干密度降低,最佳含水率增加,利于控制路堤施工质量;随石灰掺量增加,改良膨胀土物理力学特性逐渐改善,且石灰掺量≥6%时,改良膨胀土物理力学特性趋于稳定;石灰改良膨胀土路基压实度在含水率ωop+1.5时达到最大值,含水率≤ωop+1.5时,改良膨胀土无侧限抗压强度及CBR随含水率增加呈线性增大,含水率增加1%,无侧限抗压强度和CBR分别至少提高6.9%和2.6%。建议改良膨胀土最优石灰掺量为6%,施工含水率为ωop+1.5。 相似文献
19.
20.
透水混凝土在改善城市生态方面具有重要的优势,但其强度往往低于普通混凝土。粉煤灰可有效提高透水混凝土的强度并提高其耐久性。为了获得粉煤灰添加量对粉煤灰透水混凝土的透水性能和力学特性的影响,通过对比试验分别对不同粉煤灰添加量的透水混凝土试样的抗压强度、抗折强度、劈裂抗拉强度、孔隙率、透水系数等参数进行研究,研究发现随着粉煤灰添加量的增加,粉煤灰透水混凝土的孔隙率和透水系数降低,当粉煤灰添加量为20%时粉煤灰透水混凝土的力学特性最佳。 相似文献