首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 93 毫秒
1.
利用二维平面应变模型对Z-pin增强T型接头试样进行失效分析,采用内聚力模型模拟界面的破坏情况,通过在分层的上下界面加入非线性弹簧元模拟Z-pin的增强作用,非线性弹簧元的力学性能(桥联律)由细观力学方法获得,数值结果与试验值吻合较好。在已验证有限元方法的基础上,研究了Z-pin直径、密度及植入角度等对T型接头拉脱承载能力的影响。结果表明:Z-pin增强可显著提高T型接头的拉脱承载能力,与未Z-pin增强的T型接头相比,Z-pin增强明显延缓了掉载;T型接头的拉脱承载能力随Z-pin直径和密度的增加而增大,随植入角度的增大而减小;在所研究的角度范围内,当植入角度为60°时,T型接头的拉脱承载能力最好;Z-pin直径和密度对拉脱承载能力的影响远比植入角度的影响显著。  相似文献   

2.
利用二维平面应变模型对缝合增强试验件进行失效分析,采用内聚力模型模拟界面的破坏情况,通过在分层的上下界面加入非线性弹簧元来模拟缝线的增强作用,非线性弹簧元的力学性能(桥联律)由细观力学方法获得。有限元分析结果与试验值吻合较好。在此基础上,对缘条区的缝合增强进行缝线的材料、直径和缝合密度的参数化分析,研究各参数对T型接头拉脱承载能力的影响。结果表明:缝合可显著提高T型接头的拉脱承载能力,同时能使其在较大的加载位移下仍保持较高的承载性能。T型接头的拉脱承载能力随缝线直径和缝合密度的增大而增大,且直径和密度的影响显著。缝线的拉伸强度是影响缝线性能最主要的因素, T型接头的拉脱强度随缝线拉伸强度的升高而升高。T型接头的拉脱强度随缝线拉伸模量的降低而升高,但拉伸模量的影响较拉伸强度的影响小。   相似文献   

3.
为提高复合材料T型接头结构的拉伸强度,对接头中胶膜属性、圆弧区填充物属性和Z-pin增强三种结构参数对T型接头强度的影响进行了研究。设计了两种不同胶膜属性、两种不同填充材料和有无Z-pin的同尺寸试验件,完成拉伸试验,测得极限位移和极限拉伸强度,并进行了对比分析,同时研究了不同T型接头的损伤演化过程。结果表明:J299胶膜复合材料T型接头的极限位移和极限载荷相比于J116B胶膜分别提高了57.8%和64.7%;ZXC195增强芯复合材料T型接头的极限位移和极限载荷相比于单向带材料分别提高了51.7%和30.3%;Z-pin钉对复合材料T型接头的极限位移和极限载荷分别提高了190.8%和31.9%。三种结构参数均只影响接头的极限载荷和极限位移的大小,接头的整体刚度没有改变。胶膜属性对接头极限载荷的提高影响最大,而Z-pin对接头的极限位移提高影响最大。  相似文献   

4.
在关于拉脱载荷下Z-pin增强T型接头的有限元模拟方法基础上,通过对2组蒙皮厚度分别为7.2 mm和4.0 mm的试验件的试验结果进行分析,研究了T型接头蒙皮厚度对Z-pin增强效果的影响。结果表明:Z-pin增强效果随着蒙皮厚度的减小而增大。蒙皮厚度大于5 mm,Z-pin不能提高结构的最大承载能力,但可显著提高结构首次掉载后的承载性能,使T型接头在较大的加载位移下仍保持较高的承载能力;无论蒙皮厚薄,结构首次掉载后,各Z-pin增强T型接头可达到的载荷平台是相当的,且该载荷平台随蒙皮的变厚有降低的趋势。   相似文献   

5.
为了研究Z-pin对单搭接头弯曲性能的影响,制备了不同参数Z-pin增强单搭接头试样,研究了Z-pin单搭接头在三点弯曲载荷下连接性能.结果表明:Z-pin(直径0.5mm)体积分数从0%~1.5%时,弯曲载荷随Z-pin体积分数的增加而增加,体积分数在1.5%~3.0%范围内时,试样的弯曲载荷随Z-pin体积分数的增加而下降,Z-pin体积分数为1.5%时达到最大值1303.2N;Z-pin直径为0.3~0.7mm时(体积分数1.5%),峰值载荷随着直径的增加而增加,0.7mm增强接头的弯曲载荷比0.3mm增强接头高出27.9%.Z-pin植入角度对单搭接头弯曲性能影响不大.另外,随着搭接长度的增加,单搭接头的弯曲性能提高.  相似文献   

6.
采用细观力学方法以及虚拟裂纹闭合法(VCCT)对含有Z-pin增强复合材料双悬臂梁(DCB)结构Ⅰ型断裂韧性进行了研究。利用有限元法建立了结构模型,采用实体单元模拟复合材料层压板结构和非线性弹簧元模拟Z-pin。通过计算应变能释放率对含有不同体积分数Z-pin的复合材料层压板Ⅰ型断裂韧性与不含Z-pin的复合材料层压板Ⅰ型断裂韧性进行了对比分析。研究表明,含有Z-pin增强复合材料双悬臂梁(DCB)结构Ⅰ型断裂韧性在裂纹扩展过程中受到Z-pin桥联作用的影响而显著增强,且其增强效果与Z-pin的体积分数、处在桥联区的Z-pin数目均相关,这表明Z-pin增强方法能够有效提高复合材料层压板的分层扩展阻力。  相似文献   

7.
通过试验测量了复合材料蜂窝夹层结构T型整体接头的拉伸性能,得到其拉伸强度与破坏模式。建立了接头结构有限元模型,利用分类损伤判据、失效准则与刚度退化准则对结构的损伤情况进行模拟,研究了接头的拉伸破坏行为。有限元分析结果与试验结果吻合良好。研究结果表明,结构的薄弱点位于腹板内靠近蒙皮的位置。蜂窝在此处发生面外拉伸破坏,从而导致结构的最终破坏。腹板上的拉伸载荷主要通过过渡区填料传递给蒙皮,腹板与蒙皮间的搭接段对载荷传递的贡献较小。参数研究表明,对于复合材料蜂窝夹层结构T型接头,搭接段长度对结构的强度几乎没有影响,而增大蒙皮蜂窝的高度或采用低模量蜂窝可以提高结构强度。  相似文献   

8.
采用树脂传递模塑(RTM)工艺制备了结构对称和非对称两种复合材料T型接头试样,并对其进行了静态拉伸力学试验,对比分析了两种结构的拉伸破坏模式、结构刚度及破坏载荷。同时基于T接头内聚力模型(CZM),研究了两种不同结构T型接头的拉伸破坏过程及失效机制,并对比分析了不同偏转角下T接头的层间应力。结果表明:不同结构T型接头的拉伸破坏模式不同,偏转角的存在使结构非对称T型接头夹角大侧圆弧受力明显高于小侧圆弧,导致接头首先在大侧夹角圆弧与三角区界面定向萌生初始裂纹,随后裂纹主要沿大侧腹板翻边与蒙皮的界面扩展,进而导致接头最终破坏,最终失效载荷较对称T型接头提高了15.3%,且结构刚度更大。有限元结果表明T型接头三角区的初始失效主要由层间正应力及剪应力引起,有限元分析的失效模式与试验一致,结构对称及非对称T型接头最终失效载荷与试验值均吻合较好;且随着偏转角的增加,腹板圆弧处层间应力逐渐减小,初始失效载荷将随之增大;初始破坏位置将转移至大侧夹角圆弧末端。  相似文献   

9.
建立了碳纤维复合材料T型接头数值模型,模拟了其在拉伸载荷下的损伤产生、扩展及失效过程,并对碳纤维复合材料T型接头试件进行了静态拉伸试验。结果表明,接头的初始损伤载荷为9.8~12.0 kN,损伤发生后接头的载荷值发生突降(降低约27%~38%),此时接头仍具有一定承载能力;试件完全脱胶载荷较初始损伤载荷略有降低(载荷范围为8.0~8.6 kN)。数值计算和试验结果吻合,结果均显示填料区是碳纤维复合材料T型接头最薄弱的部位,易发生破坏;填料区破坏后裂纹迅速向填料区周围的胶层扩展,导致胶层的剥离,这是导致碳纤维复合材料T型接头失效的最主要原因。  相似文献   

10.
碳纤维复合材料T型接头的脱粘损伤监测实验   总被引:1,自引:0,他引:1       下载免费PDF全文
将压电传感与主动Lamb波监测技术相结合, 研究在静拉伸加载状态下碳纤维复合材料T型接头(T700/BA9916)界面脱粘及扩展过程中的信号特征, 并采用改进后的BP神经网络系统对接头损伤状态进行识别。实验结果表明: T型接头脱粘首先发生在三角填充区, 后向突缘扩展; 接头失效前, 信号能量和最小二乘峰值因子随时间呈线性递减, 能够表征脱粘程度, 利用自适应微粒群算法改进后的网络训练值与实验观测值之间的误差为3.8%~4.7%。  相似文献   

11.
《复合材料学报》2007,24(1):86-90
研究了Z-pin横向增强平纹编织陶瓷基复合材料的拉伸和层间剪切性能。炭纤维平纹编织物和炭纤维Z-pin制备的预成型体, 通过化学气相渗透(CVI)工艺制成Z-pin增强平纹编织陶瓷基复合材料。通过单轴拉伸试验及加-卸载试验研究材料拉伸力学性能参数及破坏规律。采用双切口压缩试验测试材料的层间剪切强度。结果表明, Z-pin增强平纹编织陶瓷基复合材料拉伸应力-应变曲线具有非线性特性; Z-pin嵌入降低了平纹编织陶瓷基复合材料的拉伸强度, 显著提高了陶瓷基复合材料层间剪切强度, 使原来单纯层间基体与织物表面的脱离转变为Z-pin的剪切破坏和层间基体与织物的脱离双重破坏机理。  相似文献   

12.
结合斜缝合增强和Z-pin增强2种方法, 采用混合增强方法制备泡沫夹层结构, 并对这种结构材料的平压、 平拉和剪切力学性能进行了实验研究, 考察了不同混合比例对其力学性能和破坏模式的影响。结果表明, 夹层结构中, 随着Z-pin比例的增加, 压缩强度和模量增大; 随着斜缝合比例的增加, 拉伸强度、模量以及剪切强度增大; 但不同混合增强试样的剪切模量差别不大。   相似文献   

13.
Z-pin增强对泡沫夹层结构弯曲和振动性能的影响   总被引:2,自引:1,他引:1  
通过试验研究了Z-pin增强泡沫夹层结构的弯曲性能,与未增强材料进行比较.提出采用树脂Z-pin对泡沫夹层结构进行横向增强,比较了碳pin和树脂pin的不同增强效果.结果表明,横向增强能够极大地改善泡沫夹层结构的弯曲性能,树脂pin的增强作用虽然弱于碳pin,但同样具有明显的增强效果.在此基础上,基于Z-pin增强泡沫夹芯的力学性能,对夹层结构的弯曲刚度和弯曲最大破坏载荷进行预测.最后考察了增强Z-pin各参数对泡沫夹层结构自振频率的影响,为其在航空航天等振动结构中通过合理的阻尼设计达到调频的目的打下基础.  相似文献   

14.
Analysis of adhesive bonded composite lap joints with transverse stitching   总被引:1,自引:0,他引:1  
The effect of transverse stitching on the stresses in the adhesive is investigated using an adhesive sandwich model with nonlinear adhesive properties and a transverse stitching model for adhesive bonded composite single-lap and double-lap joints. Numerical results indicate that, among all stitching parameters, thread pretension and stitch density have significant effect on the peel stresses in the adhesive; increase in the thread pretension and the stitch density leads to a decrease in peel stress in the adhesive, while an increase in other parameters generally results in a negligible reduction in peel stress. The effect of stitching was found to be negligible on the shear stresses in the adhesive. Thus it is concluded that stitching is effective for the joints where peel stresses are critical and ineffective for those where shear stresses are critical.  相似文献   

15.
This paper outlines a study on the fracture behaviour of a glass fibre reinforced polymer T-joint commonly used in composite marine vessels. Finite element analysis was conducted using the virtual crack closure technique (VCCT) to investigate the fracture behaviour of the structure. The structure analysed contained initial disbond in various locations with various sizes under a straight pull-off load. The strain energy release rate (SERR) at the disbond tips were used to predict the failure loads and crack growth mechanism of the structure. The experimental results validated the VCCT as a tool for assessing the fracture behaviour and damage criticality of such structures. It was also discovered that skewed loading affected the SERR at the crack tips which altered the fracture behaviour of such structures, therefore sensitivity analysis is recommended to enhance the prediction accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号