首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spray ignition represents a critical process in numerous propulsion and energy conversion devices. Compared to a gaseous mixture, ignition in a spray is significantly more complex, as the state of ignition in the latter case can be defined by three distinct ignition modes namely, droplet ignition, droplet cluster ignition, and spray ignition. Ignition for an individual droplet represents the appearance of a flame surrounding the droplet or in the wake region, with a dimension on the order of droplet diameter. The cluster or group ignition refers to the ignition around or inside a droplet cloud, while the spray ignition implies the appearance of a global flame with a characteristic dimension few orders of magnitude larger than a droplet. In all three modes, ignition is preceded by the evaporation of fuel droplets, formation of a combustible gaseous fuel–air mixture, and initiation of chemical reactions producing sufficient radical species. The identification of the dominant ignition mode for given two-phase properties represents a problem of significant fundamental and practical importance. Research dealing with laminar and turbulent spray ignition has been reviewed by Aggarwal [1] and Mastorakos [2], respectively, while Annamalai and Ryan [3] have provided a review of droplet group combustion/ignition. In the present review, we discuss experimental, theoretical, and computational research dealing with individual droplet ignition. Topics include the quasi-steady and unsteady models for the ignition of a fuel droplet in a stagnant environment, the droplet ignition in a high-pressure environment, the convective effects on droplet ignition, and multicomponent fuel droplet ignition. Studies dealing with the two-stage and NTC ignition behavior for a droplet are also discussed. Finally, relationship between the droplet ignition mode to droplet cluster and spray ignition modes is briefly described. Potential topics for further research are outlined.  相似文献   

2.
利用直径0.22mm的单孔喷嘴高压共轨喷油器,以喷油器油量标定数据及控制参数为基础,采用高速相机成像技术在定容燃烧室内在等喷油量变喷油压力的前提下测量了着火点、着火滞燃期、燃烧持续期、火焰面积(AF)和火焰自然发光强度(SINL)的变化规律,对比研究了RP-3航空煤油、柴油碰壁喷雾的着火和燃烧特性。结果表明:在低喷油压力下着火点分布在离壁面较远的区域,在较高喷油压力下着火点位于壁面上,距喷油器中心线的距离随喷油压力的增加而增加,且RP-3航空煤油着火点距喷油器的距离比柴油更远。随着喷油压力的增加,RP-3航空煤油碰壁喷雾火焰的着火滞燃期先降低后增加,柴油碰壁喷雾火焰的着火滞燃期不断降低,且RP-3航空煤油具有更短的着火滞燃期。燃烧持续期随喷油压力的增加而降低,RP-3航空煤油的燃烧持续期比柴油短。喷油压力越高,火焰面积(AF)和自然发光强度(SINL)的变化速率越高,而AF和SINL的最大值及达到最大值所需的时间越小。与柴油相比,RP-3航空煤油的AF、SINL具有更高的变化速率,且AF、SINL的峰值更高,达到峰值的时间更短。  相似文献   

3.
为减少一体化加力燃烧室内支板火焰稳定器高度与进口试验参数较高所导致的昂贵基础试验成本,采用经试验数据验证的数值计算方法,对不同高度的一体化模型加力燃烧室燃烧性能进行数值模拟,分析模型加力燃烧室高度变化和侧壁边界层效应对一体化加力燃烧室回流区、总压恢复系数以及燃烧效率的影响。在保持空间油雾场分布均匀与阻塞比一致的前提下,简化扇形加力燃烧室模型为矩形加力燃烧室模型,其中模型加力燃烧室高度H分别为200,150和100 mm,总长L=1 480 mm,宽B=125 mm。结果表明:模型加力燃烧室高度的降低对燃烧性能影响较小,其中回流率最大降幅为0.16%,总压恢复系数最大降幅为0.15%,燃烧效率的最大降幅为1.9%;模型加力燃烧室侧壁面边界的引入对燃烧性能影响较小,回流率、总压恢复系数最大降幅均小于1%,燃烧效率的最大降幅仅为0.7%;可以采用单支板火焰稳定装置降低高度的方法简化试验件设计。  相似文献   

4.
Heat and mass exchanges between the two phases of a spray is a key point for the understanding of physical phenomena occurring during spray evaporation in a combustion chamber. Development and validation of physical models and computational tools dealing with spray evaporation requires experimental databases on both liquid and gas phases. This paper reports an experimental study of evaporating acetone droplets streaming linearly at moderate ambient temperatures up to 75 °C. Two-color laser-induced fluorescence is used to characterize the temporal evolution of droplet mean temperature. Simultaneously, fuel vapor distribution in the gas phase surrounding the droplet stream is investigated using acetone planar laser-induced fluorescence.Temperature measurements are compared to simplified heat and mass transfer model taking into account variable physical properties, droplet-to-droplet interactions and internal fluid circulation within the droplets. The droplet surface temperature, calculated with the model, is used to initiate the numerical simulation of fuel vapor diffusion and transport in the gas phase, assuming thermodynamic equilibrium at the droplet surface. Influence of droplet diameter and droplet spacing on the fuel vapor concentration field is investigated and numerical results are compared with experiments.  相似文献   

5.
Ignition of turbulent non-premixed flames   总被引:3,自引:0,他引:3  
The initiation of turbulent non-premixed combustion of gaseous fuels through autoignition and through spark ignition is reviewed, motivated by the increasing relevance of these phenomena for new combustion technologies. The fundamentals of the associated turbulent-chemistry interactions are emphasized. Background information from corresponding laminar flow problems, relevant turbulent combustion modelling approaches, and the ignition of turbulent sprays are included. For both autoignition and spark ignition, examination of the reaction zones in mixture fraction space is revealing. We review experimental and numerical data on the stochastic nature of the emergence of autoignition kernels and of the creation of kernels and subsequent flame establishment following spark ignition, aiming to reveal the particular facet of the turbulence causing the stochasticity. In contrast to fully-fledged turbulent combustion where the effects of turbulence on the reaction are reasonably well-established, at least qualitatively, here the turbulence can cause trends that are not straightforward.  相似文献   

6.
This paper deals with the numerical simulation of the vaporisation of an unsteady fuel spray at high ambient temperature and pressure solving the appropriate conservation equations. The extended droplet vaporisation model accounts for the effects of non-ideal droplet evaporation and gas solubility including the diffusion of heat and species within fuel droplets. To account for high-temperature and high-pressure conditions, the fuel properties and the phase boundary conditions are calculated by an equation of state and the liquid/vapour equilibrium is estimated from fugacities. Calculations for an unsteady diesel-like spray were performed for a gas temperature of 800 K and a pressure of 5 MPa and compared to experimental results for droplet velocities and diameter distribution. The spray model is based on an Eulerian/Lagrangian approach. The comparison shows that the differences between the various spray models are pronounced for single droplets. For droplet sprays the droplet diameter distribution is more influenced by secondary break-up and droplet coagulation.  相似文献   

7.
针对贫油预混预蒸发燃烧室主燃级中横喷液雾现象进行研究,综合考虑RP-3航空煤油横喷液雾的雾化、蒸发和自燃过程构建自燃预测模型,基于CH基团随时间的变化规律对自燃延迟时间进行预测。结合试验测试结果对模型进行校验,并进一步分析温度、压力、流速、射流动量比等变量对自燃延迟时间的影响规律。结果表明:对于直射式喷嘴形成的横喷液雾,其下游的油气分布主要受射流动量比和流动速度的影响,射流动量比决定了液雾的总体油气比,流动速度则主要影响液滴的粒径及其蒸发时间;随着压力、射流动量比及气流速度的增加,自燃延迟时间均会缩短,相比于预混燃料液雾的自燃延迟时间受负温度效应的影响较弱。  相似文献   

8.
In this study, direct numerical simulations of the reacting mixing layer between two streams of air and fuel with different velocity and temperature have been performed using a four-step mechanism for the ignition of n-heptane. The localization of the ignition spots and the dependence of the ignition delay time on the initial conditions have been discussed and the results have been compared with those of several experimental and numerical contributions in the literature. The results show the importance of mixture fraction and scalar dissipation rate in favoring the ignition process on the sides of the jet, fully matching the outcomes of other works that use more simplified kinetic mechanisms. This result highlights the role of fluiddynamic phenomena in the development of autoignition in a mixing layer. Furthermore, ignition spots are found on the tip of the jet favored by a local increase in temperature.  相似文献   

9.
本文利用广安博之的喷雾分区模型与油滴蒸发速率模型相结合,给出燃烧室内燃油与空气的分布.依据实验数据,确定了含有18种组分、30步基元反应、适合于柴油机缸内条件的甲醇喷雾着火过程的化学动力学模型,能模拟燃烧室内甲醇喷雾自燃过程特征,用于对使用空气加热的纯甲醇压燃过程的滞燃期预测.结果表明,该模型能较成功地预测各种发动机工况下的着火滞燃期.  相似文献   

10.
Fuel droplet vaporization and spray combustion theory   总被引:1,自引:0,他引:1  
A critical review is presented of modern theoretical developments on problems of droplet vaporization in a high-temperature environment and of spray combustion. Emphasis is placed upon analytical and computational contributions to the theory with some mention of empirical evidence. Four areas of basic phenomena are discussed in some detail: (i) droplet slip and internal circulation, (ii) transient heating of the droplets, (iii) multicomponent fuel vaporization, and (iv) combustion and vaporization of droplet arrays, groups, and sprays. Various relationships amongst these phenomena are analyzed as well. Several other problem areas are given brief mention. Future directions are suggested.  相似文献   

11.
A parametric study of spark ignition in a uniform monodisperse turbulent spray is performed with complex chemistry three-dimensional Direct Numerical Simulations in order to improve the understanding of the structure of the ignition kernel. The heat produced by the kernel increases with the amount of fuel evaporated inside the spark volume. Moreover, the heat sink by evaporation is initially higher than the heat release and can have a negative effect on ignition. With the sprays investigated, heat release occurs over a large range of mixture fractions, being high within the nominal flammability limits and finite but low below the lean flammability limit. The burning of very lean regions is attributed to the diffusion of heat and species from regions of high heat release, and from the spark, to lean regions. Two modes of spray ignition are reported. With a relatively dilute spray, nominally flammable material exists only near the droplets. Reaction zones are created locally near the droplets and have a non-premixed character. They spread from droplet to droplet through a very lean interdroplet spacing. With a dense spray, the hot spark region is rich due to substantial evaporation but the cold region remains lean. In between, a large surface of flammable material is generated by evaporation. Ignition occurs there and a large reaction zone propagates from the rich burned region to the cold lean region. This flame is wrinkled due to the stratified mixture fraction field and evaporative cooling. In the dilute spray, the reaction front curvature pdf contains high values associated with single droplet combustion, while in the dense spray, the curvature is lower and closer to the curvature associated with gaseous fuel ignition kernels.  相似文献   

12.
高压旋流中空燃油喷雾日益广泛地应用于缸内直喷(GDI)汽油机中,为此发展了一种适合于模拟这种燃油喷雾雾化过程的薄膜喷雾模型.燃油薄膜的破碎过程采用表面波破碎理论来模拟.对Spalding蒸发模型和油滴阻力模型进行了改进,用来计算油滴的蒸发和阻力变形过程,同时引入初始喷雾液团的计算模块.在多维内燃机计算程序KIVA3的基础上建立了改进的数值计算模型,并对不同喷射条件下的定容压力容器中空旋流燃油喷雾过程进行了数值计算,对计算和实验所得的喷雾特性包括油束外形结构,油束喷雾贯穿度和油滴粒径进行了详细的比较,同时对单液滴的蒸发过程也进行了数值计算,油束模型的计算结果与实验结果吻合良好。  相似文献   

13.
Major theoretical accomplishments in droplets and sprays in the twentieth century are reviewed in this two-part article, with emphasis focused upon the evolution of scientific concepts, paradigms and methodologies. A structural spray theory, which was developed from an early view of isolated droplets, has evolved in to a new view that the interacting droplet and meso-scale structures and clusters of many-droplet systems are also fundamental entities in practical sprays. The first part of this work addresses the major concepts in analytical developments, which serve as the framework of modern theories of an isolated and interacting droplet. Outstanding issues and critical bottlenecks that have prevented further advancement of the existing analytical theory of droplet physics are examined, and an emerging research trend in a unified theory of droplet phenomena discussed. Recent accomplishments and future prospects of a unified theory are presented to complement the status of this special branch of droplet science and its future application.  相似文献   

14.
A percolation theory for flame propagation in non- or less-volatile fuel spray is developed based on a cubic lattice model representing a local spray state. The interdroplet flame propagation characteristics found from microgravity experiments on flame spread along a linear droplet array are applicable to describing interdroplet flame propagation between neighboring droplets in any distribution of droplets because the effect of heat conduction from the flame front is shielded by the nearest unburned droplet, which acts as a heat sink. Thus, once the method by which the unburned droplet nearest to the flame front is ignited is identified and formulated into a simple algorithm rule, we can examine by computer simulation the statistical flame propagation behavior in a non- or less-volatile fuel spray in the framework of the percolation theory. In non- or less-volatile fuel, an unburned droplet swallowed by an envelope diffusion flame of other droplets is heated and becomes a new supplier of fuel vapor to the flame front, allowing the flame front to advance. For randomly distributed droplets, the flame front selects the path that minimizes its propagation time. These two phenomena occur when the grid spacing of the cubic lattice model is equal to the maximum flame radius of an isolated droplet immersed in the same air conditions as the local spray state. Furthermore, physical considerations reveal that the lattice size that leads to statistically meaningful information can be rather small, i.e., 20×20×20 vertices. Therefore, the proposed percolation theory is tractable and useful in finding the probability that a flame front propagates across a spray element and for exploring the mechanism of the excitation of group combustion for non- or less-volatile fuel sprays.  相似文献   

15.
A numerical simulation of evaporation in a monodisperse droplet stream is proposed, taking into account the transient state of the evaporation, and the non-uniform mass and heat transfer coefficients on the droplet surface. These investigations emphasize the strong interaction effects between closely spaced droplets in a dense spray, reducing significantly the transfer coefficients. Moreover, the Marangoni force becomes more significant than the viscous force, driving the internal motion of the droplet and affecting the temperature fields. Otherwise, a better understanding of the evaporation phenomenon around closely spaced droplets will help to refine the existing models used in dense sprays.  相似文献   

16.
采用大涡模拟方法和不同的雾化模型对定容弹中燃油喷射和雾化过程进行数值分析.着重探讨亚网格尺度湍动能,特别是燃油喷雾所诱导的亚网格湍能源项对液滴运动和喷雾特性的影响,并进一步探讨了亚网格气相湍动能对液滴弥散速度乃至喷雾场的影响.通过对不同的工况条件的模拟计算对喷雾的影响因素进行了讨论并与相关的实验进行了比较.计算结果表明,KH-RT破碎模型要优于MTAB模型,湍流弥散效应和亚网格湍动能喷雾源项对燃油喷雾有着重要的影响,其作用均是减少喷雾贯穿距,使模拟结果更接近于实验.其中,湍流弥散效应的影响更为显著.  相似文献   

17.
对于双燃料发动机,引燃油蒸发、混合与燃烧是在天然气与空气混合物为介质的情况下,通过采用离散液滴模型,模拟了引燃油的蒸发与混合过程;采用经过修正的Shell模型,对引燃油的着火过程进行了数值模拟;以阿伦纽斯公式为基础,综合湍流对化学动力学的影响,提出了一个新的燃烧模型.经过模拟计算与实验对比,验证了该数值模型的模拟效果.  相似文献   

18.
Droplet collision occurs frequently in regions where the droplet number density is high. Even for Lean Premixed and Pre-vaporized (LPP) liquid sprays, the collision effects can be very high on the droplet size distributions, which will in turn affect the droplet vaporization process. Hence, in conjunction with vaporization modeling, collision modeling for such spray systems is also essential. The standard O’Rourke’s collision model, usually implemented in CFD codes, tends to generate unphysical numerical artifact when simulations are performed on Cartesian grid and the results are not grid independent. Thus, a new collision modeling approach based on no-time-counter method (NTC) proposed by Schmidt and Rutland is implemented to replace O’Rourke’s collision algorithm to solve a spray injection problem in a cylindrical coflow premixer. The so called “four-leaf clover” numerical artifacts are eliminated by the new collision algorithm and results from a diesel spray show very good grid independence. Next, the dispersion and vaporization processes for liquid fuel sprays are simulated in a coflow premixer. Two liquid fuels under investigation are jet-A and Rapeseed Methyl Esters (RME). Results show very good grid independence in terms of SMD distribution, droplet number distribution and fuel vapor mass flow rate. A baseline test is first established with a spray cone angle of 90° and injection velocity of 3 m/s and jet-A achieves much better vaporization performance than RME due to its higher vapor pressure. To improve the vaporization performance for both fuels, a series of simulations have been done at several different combinations of spray cone angle and injection velocity. At relatively low spray cone angle and injection velocity, the collision effect on the average droplet size and the vaporization performance are very high due to relatively high coalescence rate induced by droplet collisions. Thus, at higher spray cone angle and injection velocity, the results expectedly show improvement in fuel vaporization performance since smaller droplet has a higher vaporization rate. The vaporization performance and the level of homogeneity of fuel–air mixture can be significantly improved when the dispersion level is high, which can be achieved by increasing the spray cone angle and injection velocity.  相似文献   

19.
When a droplet is suddenly injected into a high‐temperature environment, the droplet self‐ignition phenomenon occurs. A simple model, based on the temperature history of target gas mixture of which the equivalent ratio is equal to 1, was proposed to predict the droplet ignition delay time in this paper. This approach clearly divides the droplet self‐ignition delay into two parts, the physical delay and the chemical delay. The predicted droplet ignition times agree well with the experimental data and numerical simulation results. In addition, the influence of droplet diameter on the droplet ignition delay was discussed in detail using this approach. © 2008 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20240  相似文献   

20.
Homogeneous charge compression ignition (HCCI) engines fueled by hydrogen have the potential to provide cost-effective power with high efficiencies and very low emissions. This paper investigates the ability of two of the most commonly used injection methods, port fuel injection (PFI) and single-pulse direct injection (DI), to prepare an ideal in-cylinder hydrogen-air mixture and control the autoignition process. Computations are performed using the one-dimensional turbulence (ODT) model formulated for engine simulations. It is found that direct injection is able to prepare a more uniformly lean mixture and control the autoignition more effectively than port fuel injection. A combination of ignition modes are found to be operating when PFI is used as compared to mainly volumetric autoignition in the case of DI. Also, DI is able to maintain comparatively lower temperatures than PFI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号