首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ascospore formation was studied in liquid cultures of the yeast Hansenula polymorpha, previously grown under conditions in which the synthesis of alcohol oxidase was repressed (glucose as growth substrate) or derepressed (methanol, glycerol and dihydroxyacetone as growth substrates and after growth on malt agar plates). In ascospores obtained from repressed cells, generally one small peroxisome was present. The organelle probably originated from the small peroxisome, originally present in the vegetative cells. They had no crystalline inclusions and cytochemical experiments indicated the presence of catalase, urate oxidase and amino acid oxidase activities in these organelles. In ascospores obtained from derepressed cells, generally 1--3 crystalline peroxisomes were observed. These organelles also originated from the peroxisomes originally present in the vegetative cells by means of fragmentation or division. They contained, in addition to the enzymes characteristic for peroxisomes in spores from repressed cells, also alcohol oxidase. The latter enzyme is probably responsible for the crystalline substructure of these peroxisomes. Peroxisomes had no apparent physiological function in the process of ascosporogenesis. A glyoxysomal function of the organelles during germination of the ascospores was also not observed. Germination of mature ascospores in media containing different sources of carbon and nitrogen showed that the function of the peroxisomes present in ascospores of Hansenula polymorpha is probably identical to that in vegetative haploid cells. They are involved in the oxidative metabolism of different carbon and nitrogen sources. Their enzyme profile is a reflection of that peroxisomes of vegetative cells and their presence may enable the formation of cells which are optimally adapted to environmental conditions extant during spore germination.  相似文献   

2.
NiC12 (1-6mM) decreased adrenaline and glucagon-stimulated lipolysis in rat fat-cells, and also considerably stimulated [U-14C]glucose incorporation into fat-cell lipids. 2. These insulin-like effects were also observed with CuCl, CuCl2, CoCl2 and (to a lesser extent) with MnCl2. 3. NiCl2 was less effective in mimicking insulin effects on [U-14C]fructose metabolism than on glucose utilization. 4. It is tentatively suggested that these transition-metal ions may mimic actions of insulin at the fat-cell plasma membrane which decrease lipolysis and stimulate glucose transport, but do not mimic certain other effects of the hormone on intracellular metabolic processes. 5. These results are discussed with reference to suggestions that redistributions of cellular Ca2+ are associated with insulin action in fat-cells.  相似文献   

3.
4.
A glutathione reductase null mutant of Saccharomyces cerevisiae was isolated in a synthetic lethal genetic screen for mutations which confer a requirement for thioredoxin. Yeast mutants that lack glutathione reductase (glr1 delta) accumulate high levels of oxidized glutathione and have a twofold increase in total glutathione. The disulfide form of glutathione increases 200-fold and represents 63% of the total glutathione in a glr1 delta mutant compared with only 6% in wild type. High levels of oxidized glutathione are also observed in a trx1 delta, trx2 delta double mutant (22% of total), in a glr1 delta, trx1 delta double mutant (71% of total), and in a glr1 delta, trx2 delta double mutant (69% of total). Despite the exceptionally high ratio of oxidized/reduced glutathione, the glr1 delta mutant grows with a normal cell cycle. However, either one of the two thioredoxins is essential for growth. Cells lacking both thioredoxins and glutathione reductase are not viable under aerobic conditions and grow poorly anaerobically. In addition, the glr1 delta mutant shows increased sensitivity to the thiol oxidant diamide. The sensitivity to diamide was suppressed by deletion of the TRX2 gene. The genetic analysis of thioredoxin and glutathione reductase in yeast runs counter to previous studies in Escherichia coli and for the first time links thioredoxin with the redox state of glutathione in vivo.  相似文献   

5.
To examine the effects of hyperglycemia on insulin signaling in A-10 vascular smooth muscle cells, cells were treated with extracellular D-glucose and effects of insulin were studied on the diacylglycerol-protein kinase C signaling system. A-10 cells specifically bound 125I-insulin, and insulin-like growth factor-I did not displace the label. 125I-insulin binding was unaltered under hyperglycemic conditions. To determine if insulin receptors were coupled to other insulin-regulated processes, diacylglycerol, protein kinase C, and glucose transport were evaluated. Insulin increased cellular diacylglycerol (DAG) levels which were also increased following glucose treatment and not further stimulated by insulin. The uptake of 2-[3H]deoxy-D-glucose (2-DOG) was stimulated by insulin and 12-O-tetradecanoyl phorbol 13-acetate (TPA). Insulin- and TPA-stimulated 2-[3H]DOG uptake was inhibited by a protein kinase inhibitor, staurosporine. Preincubation of cells with 500 nM TPA overnight resulted in the inhibition of insulin- and TPA-stimulated 2-[3H]DOG uptake. Protein kinase C activity was translocated from cytosolic to membrane fractions following insulin treatment. Overnight glucose (25 mM) treatment resulted in a 50% decrease in protein kinase C enzyme activity and > 90% decrease in protein kinase C beta immunoreactive levels. Protein kinase C activity and levels were not affected by osmotic control media containing mannitol. A-10 cells express GLUT4-type glucose transporters. Neither insulin-regulatable glucose transporter (GLUT4) mRNA nor GLUT4 protein levels were diminished by glucose. Significant decreases in insulin- and TPA-stimulated 2-[3H]DOG uptake occurred, however, with glucose. The down-regulation of protein kinase C beta and resultant inhibition of 2-[3H]DOG uptake by chronic glucose suggests a biochemical link between hyperglycemia and DAG-protein kinase C signaling in vascular smooth muscle cells.  相似文献   

6.
13C and 1H nuclear magnetic resonance spectroscopy (NMR) was used to investigate the metabolism of L-lactate and D-glucose in C6 glioma cells. The 13C enrichment of cell metabolites was examined after a 4-h incubation in media containing 5.5 mM glucose and 11 mM lactate, each metabolite being alternatively labelled with either [1-13C]D-glucose or [3-13C]L-lactate. The results indicated that exogenous lactate was the major substrate for oxidative metabolism. They were consistent with the concept of the existence of 2 pools of both lactate and pyruvate, of which 1 pool was closely connected with exogenous lactate and oxidative metabolism, and the other pool was closely related to glycolysis and disconnected from oxidative metabolism. The molecular basis of this behaviour could be related to different locations for the lactate dehydrogenase isoenzymes, as suggested by their immunohistochemical labelling.  相似文献   

7.
This communication explores the possibility that interleukin (IL)-1beta, a putative intermediary in the ovulatory process, may take part in the gonadotropin-driven midcycle diversion of ovarian carbohydrate metabolism toward glycolysis. We examined the effect of treatment with IL-1beta on glucose metabolism in aerobically cultured whole ovarian dispersates from immature rats. Treatment with IL-1beta increased cellular glucose consumption/uptake, stimulated extracellular lactate accumulation and media acidification, and decreased extracellular pyruvate accumulation in a receptor-mediated, time-, dose- and cell density-dependent manner. Endogenous IL-1beta-like bioactivity was shown to mediate the ability of gonadotropins to exert these same metabolic effects. The IL-1beta effect was also (1) apparent over a broad range of glucose concentrations, inclusive of the putative physiological window; (2) relatively specific, because tumor necrosis factor-alpha and insulin were inactive; (3) contingent upon cell-cell cooperation (4) and reliant on de novo protein synthesis. Comparison of the molar ratios of lactate accumulation to glucose consumption in IL-1beta-replete vs. IL-1beta-deplete cultures suggests that IL-beta promotes the conversion of all available glucose to lactate but that other substrates for lactate production may also exist. However, no lactate was generated by cells grown under glucose-free conditions. Taken together, our data suggest that IL-1beta may act as a metabolic hormone in the ovary. Subject to the limitations of the in vitro paradigm, our data also suggest that IL-1beta may mediate the gonadotropin-associated midcycle shift in ovarian carbohydrate metabolism. By converting the somatic ovarian cells into a glucose-consuming glycolytic machinery, IL-1beta may establish glycolysis as the main energy source of the relatively hypoxic preovulatory follicle and the resultant cumulus-oocyte complex. The consequent oxygen sparing may conserve the limited supply of oxygen needed for vital biosynthetic processes such as steroidogenesis. This adaptational response may also provide the glycolytically incompetent oocyte with the obligatory tricarboxylic cycle precursors it depends on to meet the increased energy demands imposed upon it by the resumption of meiosis.  相似文献   

8.
Mutant strains of the methylotrophic yeast Hansenula polymorpha defective in catalase (cat) and in glucose repression of alcohol oxidase synthesis (gcr1) have been isolated following multiple UV mutagenesis steps. One representative gcr1 cat mutant C-105 grows during batch cultivation in a glucose/methanol medium. However, growth is preceded by a prolonged lag period. C-105 and other gcr1 cat mutants do not grow on methanol medium without an alternative carbon source. A large collection of second-site suppressor catalase-defective (scd) revertants were isolated with restored ability for methylotrophic growth (Mth+) in the absence of catalase activity. These Mth+ gcr1 cat scd strains utilize methanol as a sole source of carbon and energy, although biomass yields are reduced relative to the wild-type strain. In contrast to the parental C-105 strain, H2O2 does not accumulate in the methanol medium of the revertants. We show that restoration of methylotrophic growth in the suppressor strains is strongly correlated with increased levels of the alternative H2O2-destroying enzyme, cytochrome c peroxidase. Cytochrome c peroxidase from cell-free extracts of one of the scd revertants has been purified to homogeneity and crystallized.  相似文献   

9.
Mechanisms of decreased insulin responsiveness of large adipocytes   总被引:1,自引:0,他引:1  
We have studied glucose metabolism using large adipocytes isolated from older, fatter rats (greater than 12 months old, greater than 550 g), and smaller cells obtained from younger, leaner animals (4-5 weeks old, 126-160 g). 2-Deoxyglucose uptake was equal in large and small adipocytes, while insulin mediated oxidation of [1(-14)C]glucose was greatly diminished (7-fold) in large cells. Thus, the defect in oxidation of the number one carbon atom of glucose (pentose pathway oxidation) is distal to the 2-deoxyglucose uptake system. However, this intracellular defect is not present in all pathways of glucose oxidation as demonstrated by the finding that [6(-14)C]glucose oxidation was comparable in small and large adipocytes. Thus, the number six carbon atom of glucose is oxidized normally indicating that glycolytic and Krebs cycle activity is intact in the large adipocyte. Furthermore, in large adipocytes conversion of glucose to total lipid was normal in the basal state and moderately decreased at high glucose concentrations in the presence of insulin (up to 35%). When the radioactivity in total lipids was fractionated, a severe decrease in glucose incorporation into fatty acids was found in the large cells. Total glucose uptake was also measured, and found to be 10-50% decreased in large cells, suggesting that the decreases in pentose pathway glucose metabolism and conversion to fatty acids lead to accumulation of free intracellular glucose with glucose efflux and a decrease in net glucose uptake. Comparing the 2-deoxyglucose uptake and glucose oxidation data showed that insulin promotes [6(-14)C]glucose oxidation by stimulating the processes responsible for 2-deoxyglucose uptake whereas insulin promotes [1(-14)C]glucose oxidation both by increasing these processes and by increasing the activity of the C-1 oxidative pathway. In conclusion: 1) the 2-deoxyglucose uptake system of the large adipocyte is basically intact, 2) [1(-14)C]glucose oxidation is markedly decreased in large adipocytes, while [6(-14)C]glucose oxidation is normal, and 3) in comparing small and large adipocytes, it appears that it is the ability of insulin to enhance glucose oxidation via the pentose pathway and to promote glucose incorporation into fatty acids which is most impaired in large adipocytes.  相似文献   

10.
The effects of both Salmonella typhimurium infection and 5 mM ofloxacin treatment on 2 mM glutamine and 5 mM glucose metabolism in the enterocyte-like Caco-2/TC-7 cell line were studied. These cells utilized glutamine (212.07 +/- 16.75 [mean +/- standard deviation] nmol per h per 10(6) viable cells) and, to a lesser extent, glucose (139.63 +/- 11.52 nmol per h per 10(6) viable cells). Metabolism of these substrates in Caco-2/TC-7 cells resembled that in rat, pig, or human enterocytes. Infection by S. typhimurium C53-enhanced glucose and glutamine substrate utilization by 32 and 22%, respectively and enhanced glucose and glutamine substrate oxidation by eight- and twofold, respectively. These increases in glucose and glutamine metabolism (especially glucose metabolism) were due in part to the metabolism of intracellular bacteria and/or to the activation of cellular metabolism. Substrate metabolism (especially glucose metabolism) in C53-infected cells was partially reduced by treatment with ofloxacin. It was concluded that cellular fuel metabolism is stimulated at the earliest stage of infection (3 to 4 h) and that treatment with 5 mM ofloxacin does not completely restore substrate metabolism to the levels observed in uninfected cells, possibly because this treatment does not eradicate intracellular S. typhimurium completely.  相似文献   

11.
The purpose of this study was to determine whether catalase-dependent alcohol metabolism is activated by alcohol (i.e., swift increase in alcohol metabolism). When ethanol or the selective substrate for catalase, methanol, was given (5.0 g/kg) in vivo 2 to 3 h before liver perfusion, methanol and oxygen metabolism were increased significantly. This increase was blocked when the specific Kupffer cell toxicant GdCl3 was administered 24 h before perfusion. These data support the hypothesis that catalase-dependent alcohol metabolism is activated by acute alcohol and that Kupffer cells are involved. Ethanol treatment in vivo increased ketogenesis from endogenous fatty acids nearly 3-fold and increased plasma triglycerides and hepatic acyl CoA synthetase activity; all increases were blocked by GdCl3. These findings support the hypothesis that ethanol increases H2O2 supply for catalase-dependent alcohol metabolism by increasing fatty acid supply. Infusion of oleate stimulated oxygen uptake 1.5-fold and methanol metabolism 4-fold, but these parameters were not altered by GdCl3. Moreover, the effects of ethanol treatment were blocked by the cyclooxygenase inhibitor indomethacin, and prostaglandin E2 (PGE2) was increased more than 200% in media from cultured Kupffer cells from rats treated with ethanol in vivo. Furthermore, lipoprotein lipase activity in retroperitoneal fat pads, which is known to be inhibited by PGE2, was reduced 70% by ethanol. These data are consistent with the hypothesis that Kupffer cells play a key role in activation of catalase-dependent alcohol metabolism, most likely by producing mediators (e.g., PGE2) that inhibit lipoprotein lipase, increase the supply of fatty acids to the liver, and increase generation of H2O2 via peroxisomal beta-oxidation.  相似文献   

12.
13C-NMR spectroscopy was used to evaluate the dynamic consequences of portacaval anastomosis on neuronal and astrocytic metabolism and metabolic trafficking between neurons and astrocytes. Glutamate is predominantly labeled from [1-13C]glucose, whereas [2-13C]acetate is more efficient in labeling glutamine, in accordance with its primary metabolism in astrocytes. Alanine and succinate labeling was only observed with [1-13C]glucose as precursor. Brain [1-13C]glucose metabolism in portacaval-shunted rats was similar to that in sham-operated controls with the exception of labeled glutamine and succinate formation, which was increased in shunted rats. The 13C enrichment was, however, decreased owing to an increase in total glutamine and succinate. Using [2-13C]acetate, on the other hand, flux of astrocytic label to neurons was severely decreased because label incorporation into glutamate, aspartate, and GABA was decreased following portacaval shunting. The latter amino acids are predominantly localized in neurons. These findings demonstrate that metabolic trafficking of amino acids from astrocytes to neurons is impaired in portacaval-shunted rats.  相似文献   

13.
13C and 1H NMR spectroscopy was used to investigate the metabolism of L-lactate and D-glucose in C6 glioma cells. The changing of lactate and glucose concentration in the extracellular medium of C6 glioma cells incubated with 5.5 mM glucose and 11 mM lactate indicated a net production of lactate as the consequence of an active aerobic glycolysis. The 13C enrichments of various metabolites were determined after 4-h cell incubation in media containing both substrates, each of them being alternatively labeled in the form of either [3-13C]L-lactate or [1-13C]D-glucose. Using 11 mM [3-13C]L-lactate, the enrichment of glutamate C4, 69%, was found higher than that of alanine C3, 32%, when that of acetyl-CoA C2 was 78%. These results indicated that exogenous lactate was the major substrate for the oxidative metabolism of the cells. Nevertheless, an active glycolysis occurred, leading to a net lactate production. This lactate was, however, metabolically different from the exogenous lactate as both lactate species did not mix into a unique compartment. The results were actually consistent with the concept of the existence of two pools of both lactate and pyruvate, wherein one pool was closely connected with exogenous lactate and was the main fuel for the oxidative metabolism, and the other pool was closely related to aerobic glycolysis.  相似文献   

14.
To determine if lactate is produced during aerobic metabolism in peripheral nerve, we incubated pieces of rabbit vagus nerve in oxygenated solution containing D-[U-14C]glucose while stimulating electrically. After 30 min, nearly all the radioactivity in metabolites in the nerve was in lactate, glucose 6-phosphate, glutamate, and aspartate. Much lactate was released to the bath: 8.2 pmol (microg dry wt)(-1) from the exogenous glucose and 14.2 pmol (microg dry wt)(-1) from endogenous substrates. Lactate release was not increased when bath PO2 was decreased, indicating that it did not come from anoxic tissue. When the bath contained [U-14C]lactate at a total concentration of 2.13 mM and 1 mM glucose, 14C was incorporated in CO2 and glutamate. The initial rate of formation of CO2 from bath lactate was more rapid than its formation from bath glucose. The results are most readily explained by the hypothesis that has been proposed for brain tissue in which glial cells supply lactate to neurons.  相似文献   

15.
Glutathione (GSH) is an abundant and ubiquitous low-molecular-weight thiol which has proposed roles in many cellular processes including protection against the deleterious effects of reactive oxygen species. Our experiments have addressed the role of GSH in protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae, and have shown that GSH and catalase provide overlapping defense systems. GSH appears to be the primary antioxidant for protection against hydrogen peroxide since mutants lacking GSH (gsh1) or glutathione reductase (glr1) are sensitive, whereas, strains lacking catalase A (cta1) or catalase T (ctt1) are unaffected in resistance to this oxidant. Furthermore, following treatment with hydrogen peroxide, the levels of oxidized, protein-bound and extracellular GSH were all increased at the expense of intracellular GSH. However, there are two lines of evidence that indicate catalases are required in the absence of GSH; firstly, strains that lack both catalase A and T accumulate increased levels of oxidized glutathione following treatment with hydrogen peroxide; and secondly, deletion of catalase genes exacerbates the hydrogen peroxide sensitivity of glr1 and gsh1 mutants.  相似文献   

16.
Polar headgroups of free glycosyl-phosphatidylinositol (GPI) lipids or protein-bound GPI membrane anchors have been shown to exhibit insulin-mimetic activity in different cell types. However, elucidation of the molecular mode of action of these phospho-inositolglycan (PIG) molecules has been hampered by 1) lack of knowledge of their exact structure; 2) variable action profiles; and 3) rather modest effects. In the present study, these problems were circumvented by preparation of PIG-peptides (PIG-P) in sufficient quantity by sequential proteolytic (V8 protease) and lipolytic (phosphatidylinositol-specific phospholipase C) cleavage of the GPI-anchored plasma membrane protein, Gce1p, from the yeast Saccharomyces cerevisiae. The structure of the resulting PIG-P, NH2-Tyr-Cys-Asn-ethanolamine-PO4-6(Man1-2)Man1-2Man1-+ ++6Man1-4GlcNH(2)1-6myo-inositol-1,2-cyclicPO4, was revealed by amino acid analysis and Dionex exchange chromatography of fragments generated enzymatically or chemically from the neutral glycan core and is in accordance with the known consensus structures of yeast GPI anchors. PIG-P stimulated glucose transport and lipogenesis in normal, desensitized and receptor-depleted isolated rat adipocytes, increased glycerol-3-phosphate acyltransferase activity and translocation of the glucose transporter isoform 4, and inhibited isoproterenol-induced lipolysis and protein kinase A activation in adipocytes. Furthermore, PIG-P was found to stimulate glucose transport in isolated rat cardiomyocytes and glycogenesis and glycogen synthase in isolated rat diaphragms. The concentration-dependent effects of the PIG-P reached 70-90% of the maximal insulin activity with EC50-values of 0.5-5 microM. Chemical or enzymic cleavages within the glycan or peptide portion of the PIG-P led to decrease or loss of activity. The data demonstrate that PIG-P exhibits a potent insulin-mimetic activity which covers a broad spectrum of metabolic insulin actions on glucose transport and metabolism.  相似文献   

17.
Effects of increasing extracellular K+ or intracellular Na+ concentrations on glucose metabolism in cultures of rat astroglia and neurons were examined. Cells were incubated in bicarbonate buffer, pH 7.2, containing 2 mM glucose, tracer amounts of [14C]deoxyglucose ([14C]dGlc), and 5.4, 28, or 56 mM KCl for 10, 15, or 30 min, and then for 5 min in [14C]dGlc-free buffer to allow efflux of unmetabolized [14C]dGlc. Cells were then digested and assayed for labeled products, which were shown to consist of 96-98% [14C]deoxyglucose 6-phosphate. Increased K+ concentrations significantly raised [14C]deoxyglucose 6-phosphate accumulation in both neuronal and mixed neuronal-astroglial cultures at 15 and 30 min but did not raise it in astroglial cultures. Veratridine (75 microM), which opens voltage-dependent Na+ channels, significantly raised rates of [14C]dGlc phosphorylation in astroglial cultures (+20%), and these elevations were blocked by either 1 mM ouabain, a specific inhibitor of Na+,K(+)-ATPase (EC 3.6.1.37), or 10 microM tetrodotoxin, which blocks Na+ channels. The carboxylic sodium ionophore, monensin (10 microM), more than doubled [14C]dGlc phosphorylation; this effect was only partially blocked by ouabain and unaffected by tetrodotoxin. L-Glutamate (500 microM) also stimulated [14C]dGlc phosphorylation in astroglia--not through N-methyl-D-aspartate or non-N-methyl-D-aspartate receptor mechanisms but via a Na(+)-dependent glutamate-uptake system. These results indicate that increased uptake of Na+ can stimulate energy metabolism in astroglial cells.  相似文献   

18.
1. The direct short-term effects of troglitazone on parameters of glucose metabolism were investigated in rat soleus muscle strips. 2. In muscle strips from Sprague-Dawley rats, troglitazone (3.25 micromol l(-1)) increased basal and insulin-stimulated glucose transport by 24% and 41%, respectively (P<0.01 each). 3. In the presence of 5 nmol l(-1) insulin, stimulation of glucose transport by 3.25 micromol l(-1) troglitazone was accompanied by a 36% decrease in glycogen synthesis, while glycolysis was increased (112% increase in lactate production) suggesting a catabolic response of intracellular glucose handling. 4. Whereas insulin retained its stimulant effect on [3H]-2-deoxy-glucose transport in hypoxia-stimulated muscle (by 44%; c.p.m. mg(-1) h(-1): 852+/-77 vs 1229+/-75, P<0.01), 3.25 micromol l(-1) troglitazone failed to increase glucose transport under hypoxic conditions (789+/-40 vs 815+/-28, NS) suggesting that hypoxia and troglitazone address a similar, non-insulin-like mechanism. 5. No differences between troglitazone and hypoxia were identified in respective interactions with insulin. 6. Troglitazone acutely stimulated muscle glucose metabolism in a hypoxia/contraction-like manner, but it remains to be elucidated whether this contributes to the long-term antidiabetic and insulin enhancing potential in vivo or is to be regarded as an independent pharmacological effect.  相似文献   

19.
A methylotrophic yeast, Candida boidinii, was grown on various combinations of peroxisome-inducing carbon source(s) (PIC(s)), i.e. methanol, oleate and D-alanine, and the regulation of peroxisomal proteins (both matrix and membrane ones) and organelle proliferation were studied. This regulation was followed (1) at the protein or enzyme level by means of the peroxisomal enzyme activity and Western analysis; (2) at the mRNA level by Northern analysis; and (3) at the organelle level by direct observation of peroxisomes under a fluorescent microscope. Peroxisomal proliferation was followed in vivo by using a C. boidinii strain producing a green fluorescent protein having peroxisomal targeting signal 1. When multiple PICs were used for cell growth, C. boidinii induced specific peroxisomal proteins characteristic of all PIC(s) present in the medium, responding to all PIC(s) simultaneously. Thus, these PICs were considered to induce peroxisomal proliferation independently and not to repress peroxisomes induced by other PICs. Next, the sensitivity of the peroxisomal induction to glucose repression was studied. While the peroxisomal induction by methanol or oleate was completely repressed by glucose, the D-alanine-induced activities of D-amino acid oxidase and catalase, Pmp47, and the organelle proliferation were not. These results indicate that peroxisomal proliferation in yeasts is not necessarily sensitive to glucose repression. Lastly, this regulation was shown to occur at the mRNA level.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号