首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants defend themselves against herbivores and pathogens with a suite of morphological, phenological, biochemical, and biotic defenses, each of which is presumably costly. The best studied are allocation costs that involve trade-offs in investment of resources to defense versus other plant functions. Decreases in growth or reproductive effort are the costs most often associated with antiherbivore defenses, but trade-offs among different defenses may also occur within a single plant species. We examined trade-offs among defenses in closely related tropical rain forest shrubs (Piper cenocladum, P. imperiale, and P. melanocladum) that possess different combinations of three types of defense: ant mutualists, secondary compounds, and leaf toughness. We also examined the effectiveness of different defenses and suites of defenses against the most abundant generalist and specialist Piper herbivores. For all species examined, leaf toughness was the most effective defense, with the toughest species, P. melanocladum, receiving the lowest incidence of total herbivory, and the least tough species, P. imperiale, receiving the highest incidence. Although variation in toughness within each species was substantial, there were no intraspecific relationships between toughness and herbivory. In other Piper studies, chemical and biotic defenses had strong intraspecific negative correlations with herbivory. A wide variety of defensive mechanisms was quantified in the three Piper species studied, ranging from low concentrations of chemical defenses in P. imperiale to a complex suite of defenses in P. cenocladum that includes ant mutualists, secondary metabolites, and moderate toughness. Ecological costs were evident for the array of defensive mechanisms within these Piper species, and the differences in defensive strategies among species may represent evolutionary trade-offs between costly defenses.  相似文献   

2.
The tropical rainforest shrub Piper cenocladum, which is normally defended against herbivores by a mutualistic ant, contains three amides that have various defensive functions. While the ants are effective primarily against specialist herbivores, we hypothesized that these secondary compounds would be effective against a wider range of insects, thus providing a broad array of defenses against herbivores. We also tested whether a mixture of amides would be more effective against herbivores than individual amides. Diets spiked with amides were offered to five herbivores: a naïve generalist caterpillar (Spodoptera frugiperda), two caterpillar species that are monophagous on P. cenocladum (Eois spp.), leaf-cutting ants (Atta cephalotes), and an omnivorous ant (Paraponera clavata). Amides had negative effects on all insects, whether they were naïve, experienced, generalized, or specialized feeders. For Spodoptera, amide mixtures caused decreased pupal weights and survivorship and increased development times. Eois pupal weights, larval mass gain, and development times were affected by additions of individual amides, but increased parasitism and lower survivorship were caused only by the amide mixture. Amide mixtures also deterred feeding by the two ant species, and crude plant extracts were strongly deterrent to P. clavata. The mixture of all three amides had the most dramatic deterrent and toxic effects across experiments, with the effects usually surpassing expected additive responses, indicating that these compounds can act synergistically against a wide array of herbivores.  相似文献   

3.
Plants use a diverse mix of defenses against herbivores, including multiple secondary metabolites, which often affect herbivores synergistically. Chemical defenses also can affect natural enemies of herbivores via limiting herbivore populations or by affecting herbivore resistance to parasitoids. In this study, we performed feeding experiments to examine the synergistic effects of imides and amides (hereafter “amides”) from Piper cenocladum and P. imperiale on specialist (Eois nympha, Geometridae) and generalist (Spodoptera frugiperda, Noctuidae) lepidopteran larvae. Each Piper species has three unique amides, and in each experiment, larvae were fed diets containing different concentrations of single amides or combinations of the three. The amides from P. imperiale had negative synergistic effects on generalist survival and specialist pupal mass, but had no effect on specialist survival. Piper cenocladum amides also acted synergistically to increase mortality caused by parasitoids, and the direct negative effects of mixtures on parasitoid resistance and pupal mass were stronger than indirect effects via changes in growth rate and approximate digestibility. Our results are consistent with plant defense theory that predicts different effects of plant chemistry on generalist versus adapted specialist herbivores. The toxicity of Piper amide mixtures to generalist herbivores are standard bottom-up effects, while specialists experienced the top-down mediated effect of mixtures causing reduced parasitoid resistance and associated decreases in pupal mass.  相似文献   

4.
Rhyssomatus lineaticollis is a milkweed specialist whose larvae feed upon pith parenchyma in ramet stems of the common milkweed, Asclepias syriaca. Compared with other specialist insect herbivores on milkweeds, this curculionid beetle is unusual in that it is cryptically colored and does not sequester cardenolides characteristic of milkweed chemical defense. Based upon optimal defense theory, we predicted that pith tissue would be low in defensive compounds and that oviposition into the pith would spatially avoid cardenolides. We rejected this hypothesis because we found that pith tissue has a relatively high cardenolide concentration compared to cortex, epidermis, and leaf tissues. Moreover, we found total plant cardenolide concentration was lower in plants that contained the beetle eggs. Cardenolide concentrations were different among tissues in intact stems without the pith herbivore compared to stems where it was present. Furthermore, the overall polarity of the cardenolides present varied among plant tissues and between plants with and without R. lineaticollis eggs. Although we found lower concentrations of cardenolide in piths where the eggs were present, the cardenolides present in the pith contained more nonpolar forms, indicating that the plant may be responding to herbivory by increasing toxic efficacy of cardenolide defenses while lowering the total concentration. We suggest that preoviposition behavior by female beetles, which includes feeding on new leaves of the plant, is a mechanism by which females manipulate plant chemistry and assess quantitative and qualitative changes in cardenolide chemistry in response to herbivory prior to oviposition.  相似文献   

5.
Theory predicts that plant resistance to herbivores is determined by both genetic and environmentally induced components. In this study, we demonstrate that the phenotypic expression of plant resistance to spider mite herbivory in Cucumis sativus is determined by genetic and environmental factors and that there is an interaction between these factors. Previous feeding by spider mites induced systemic resistance to subsequent attack over several spatial scales within plants, reducing the population growth of mites compared to that on control plants. Effects of induction were effective locally over the short term, but resulted in local increased susceptibility to spider mite attack after several days. However, this local induced susceptibility on the damaged leaf was associated with induced resistance on newer leaves. Induced resistance was correlated with increases in cucurbitacin content of leaves, but was not associated with changes in the density of leaf trichomes. Induced resistance to herbivory was not detected in plants of a genotype lacking constitutive expression of cucurbitacins, which were in general highly susceptibile to mite attack. Allocation trade-offs between growth and defense are often invoked to explain the maintenance of variation in the levels of plant resistance. Contrary to current thinking, neither constitutive nor herbivore-induced plant resistance were associated with reductions in plant allocation to root and shoot growth. However, plants that had high levels of induced resistance to spider mites were the most susceptible to attack by a specialist beetle. Such ecological trade-offs between resistance to generalist herbivores and susceptibility to specialist herbivores may be important in the maintenance of variation of plant resistance traits. In summary, C. sativus exhibits strong genetic variation for constitutive and induced resistance to spider mites, and this variation in resistance is associated with ecological trade-offs.  相似文献   

6.

In response to herbivory, plants emit volatile compounds that play important roles in plant defense. Herbivore-induced plant volatiles (HIPVs) can deter herbivores, recruit natural enemies, and warn other plants of possible herbivore attack. Following HIPV detection, neighboring plants often respond by enhancing their anti-herbivore defenses, but a recent study found that herbivores can manipulate HIPV-interplant communication for their own benefit and suppress defenses in neighboring plants. Herbivores induce species-specific blends of HIPVs and how these different blends affect the specificity of plant defense responses remains unclear. Here we assessed how HIPVs from zucchini plants (Cucurbita pepo) challenged with different herbivore species affect resistance in neighboring plants. Volatile “emitter” plants were damaged by one of three herbivore species: saltmarsh caterpillars (Estigmene acrea), squash bugs (Anasa tristis), or striped cucumber beetles (Acalymma vittatum), or were left as undamaged controls. Neighboring “receiver” plants were exposed to HIPVs or control volatiles and then challenged by the associated herbivore species. As measures of plant resistance, we quantified herbivore feeding damage and defense-related phytohormones in receivers. We found that the three herbivore species induced different HIPV blends from squash plants. HIPVs induced by saltmarsh caterpillars suppressed defenses in receivers, leading to greater herbivory and lower defense induction compared to controls. In contrast, HIPVs induced by cucumber beetles and squash bugs did not affect plant resistance to subsequent herbivory in receivers. Our study shows that herbivore species identity affects volatile-mediated interplant communication in zucchini, revealing a new example of herbivore defense suppression through volatile cues.

  相似文献   

7.
The capacity to produce carbon-based secondary compounds (CBSC), such as phenolics (including tannins) and terpenes as defensive compounds against herbivores or against neighboring competing plants can be involved in the competition between alien and native plant species. Since the Hawaiian Islands are especially vulnerable to invasions by alien species, we compared total phenolic (TP), total tannin (Tta), and total terpene (TT) leaf contents of alien and native plants on Oahu Island (Hawaii). We analyzed 35 native and 38 alien woody plant species randomly chosen among representative current Hawaiian flora. None of these CBSC exhibited phylogenetic fingerprinting. Alien species had similar leaf TP and leaf Tta contents, and 135% higher leaf TT contents compared with native species. Alien plants had 80% higher leaf TT:N leaf content ratio than native plants. The results suggest that apart from greater growth rate and greater nutrient use, alien success in Oahu also may be linked to greater contents of low cost chemical defenses, such as terpenes, as expected in faster-growing species in resource rich regions. The higher TT contents in aliens may counterbalance their lower investment in leaf structural defenses and their higher leaf nutritional quality. The higher TT provides higher effectiveness in deterring the generalist herbivores of the introduced range, where specialist herbivores are absent. In addition, higher TT contents may favor aliens conferring higher protection against abiotic and biotic stressors. The higher terpene accumulation was independent of the alien species origin, which indicates that being alien either selects for higher terpene contents post-invasion, or that species with high terpene contents are pre-adapted to invasiveness. Although less likely, an originally lower terpene accumulation in Hawaiian than in continental plants that avoids the increased attraction of specialist enemies associated to terpenes may not be discarded.  相似文献   

8.
Plant defensive compounds may be a cost rather than a benefit when plants are attacked by specialist insects that may overcome chemical barriers by strategies such as sequestering plant compounds. Plants may respond to specialist herbivores by compensatory growth rather than chemical defense. To explore the use of defensive chemistry vs. compensatory growth we studied Brugmansia suaveolens (Solanaceae) and the specialist larvae of the ithomiine butterfly Placidina euryanassa, which sequester defensive tropane alkaloids (TAs) from this host plant. We investigated whether the concentration of TAs in B. suaveolens was changed by P. euryanassa damage, and whether plants invest in growth, when damaged by the specialist. Larvae feeding during 24 hr significantly decreased TAs in damaged plants, but they returned to control levels after 15 days without damage. Damaged and undamaged plants did not differ significantly in leaf area after 15 days, indicating compensatory growth. Our results suggest that B. suaveolens responds to herbivory by the specialist P. euryanassa by investing in growth rather than chemical defense.  相似文献   

9.
Plants produce a variety of secondary metabolites (PSMs) that may be selective against herbivores. Yet, specialist herbivores may use PSMs as cues for host recognition, oviposition, and feeding stimulation, or for their own defense against parasites and predators. This summarizes a dual role of PSMs: deter generalists but attract specialists. It is not clear yet whether specialist herbivores are a selective force in the evolution of PSM diversity. A prerequisite for such a selective force would be that the preference and/or performance of specialists is influenced by PSMs. To investigate these questions, we conducted an oviposition experiment with cinnabar moths (Tyria jacobaeae) and plants from an artificial hybrid family of Jacobaea vulgaris and Jacobaea aquatica. The cinnabar moth is a specialist herbivore of J. vulgaris and is adapted to pyrrolizidine alkaloids (PAs), defensive PSMs of these plants. The number of eggs and egg batches oviposited by the moths were dependent on plant genotype and positively correlated to concentrations of tertiary amines of jacobine-like PAs and some otosenine-like PAs. The other PAs did not correlate with oviposition preference. Results suggest that host plant PAs influence cinnabar moth oviposition preference, and that this insect is a potential selective factor against a high concentration of some individual PAs, especially those that are also involved in resistance against generalist herbivores.  相似文献   

10.
Plants have been interacting with insects for several hundred million years, leading to complex defense approaches against various insect feeding strategies. Some defenses are constitutive while others are induced, although the insecticidal defense compound or protein classes are often similar. Insect herbivory induce several internal signals from the wounded tissues, including calcium ion fluxes, phosphorylation cascades and systemic- and jasmonate signaling. These are perceived in undamaged tissues, which thereafter reinforce their defense by producing different, mostly low molecular weight, defense compounds. These bioactive specialized plant defense compounds may repel or intoxicate insects, while defense proteins often interfere with their digestion. Volatiles are released upon herbivory to repel herbivores, attract predators or for communication between leaves or plants, and to induce defense responses. Plants also apply morphological features like waxes, trichomes and latices to make the feeding more difficult for the insects. Extrafloral nectar, food bodies and nesting or refuge sites are produced to accommodate and feed the predators of the herbivores. Meanwhile, herbivorous insects have adapted to resist plant defenses, and in some cases even sequester the compounds and reuse them in their own defense. Both plant defense and insect adaptation involve metabolic costs, so most plant-insect interactions reach a stand-off, where both host and herbivore survive although their development is suboptimal.  相似文献   

11.
Plants synthesize variable mixtures of herbivore-induced plant volatiles (HIPVs) as part of their evolutionary conserved defense. To elucidate the impact of chewing herbivores with different level of adaptation on HIPV profiles in rice, we measured HIPVs released from rice seedlings challenged by either the generalist herbivore Mythimna loreyi (MYL) or the specialist Parnara guttata (PAG). Both herbivores markedly elicited the emission of HIPVs, mainly on the second and third days after attack compared to control plants. In addition, side-by-side HIPV comparisons using MYL and PAG caterpillars revealed that generalist feeding induced comparably more HIPVs relative to specialist, particularly on day two as highlighted by multivariate analysis (PLS-DA) of emitted HIPVs, and further confirmed in mimicked herbivory experiments. Here, mechanically wounded plants treated with water (WW) released more VOCs than untreated controls, and on top of this, oral secretions (OS) from both herbivores showed differential effects on volatile emissions from the wounded plants. Similar to actual herbivory, MYL OS promoted higher amounts of HIPVs relative to PAG OS, thus supporting disparate induction of rice indirect defenses in response to generalist and specialist herbivores, which could be due to the differential composition of their OS. (196 words).  相似文献   

12.
As sessile organisms, plants rely on their environment for cues indicating imminent herbivory. These cues can originate from tissues on the same plant or from different individuals. Since parasitic plants form vascular connections with their host, parasites have the potential to receive cues from hosts that allow them to adjust defenses against future herbivory. However, the role of plant communication between hosts and parasites for herbivore defense remains poorly investigated. Here, we examined the effects of damage to lupine hosts (Lupinus texensis) on responses of the attached hemiparasite (Castilleja indivisa), and indirectly, on a specialist herbivore of the parasite, buckeyes (Junonia coenia). Lupines produce alkaloids that act as defenses against herbivores that can be taken up by the parasite. We found that damage to lupine host plants by beet armyworm (Spodoptera exigua) significantly increased jasmonic acid (JA) levels in both the lupine host and parasite, suggesting uptake of phytohormones or priming of parasite defenses by using host cues. However, lupine host damage did not induce changes in alkaloid levels in the hosts or parasites. Interestingly, the parasite had substantially higher concentrations of JA and alkaloids compared to lupine host plants. Buckeye herbivores consumed more parasite tissue when attached to damaged compared to undamaged hosts. We hypothesize that increased JA due to lupine host damage induced higher iridoid glycosides in the parasite, which are feeding stimulants for this specialist herbivore. Our results demonstrate that damage to hosts may affect both parasites and associated herbivores, indicating cascading effects of host damage on multiple trophic levels.  相似文献   

13.
Herbivore-induced plant responses can significantly change as a function of plant developmental stage and previous history of damage. Yet, empirical tests that assess the combined role of multiple damage events and age-dependent constraints on the ability of plants to induce defenses within and among tissues are scarce. This question is of particular interest for annual and/or short-lived perennial plant species, whose responses to single or multiple damage events over a growing season are likely to interact with ontogenetic constraints in affecting a plant’s ability to respond to herbivory. Using Plantago lanceolata and one of its specialist herbivores, Junonia coenia, we examined the effect of plant ontogeny (juvenile vs. mature developmental stages) and history of damage (single and multiple damage events early and/or late in the season) on plant responses to leaf damage. Plant responses to herbivory were assessed as induced chemical defenses (iridoid glycosides) and compensatory regrowth, in both above- and below-ground tissues. We found that constitutive concentration of iridoid glycosides markedly increased as plants matured, but plant ability to induce chemical defenses was limited to juvenile, but not mature, plant stages. In addition, induced defenses observed 7 d following herbivory in juvenile plants disappeared 5 wk after the first herbivory event, and mature plants that varied considerably in the frequency and intensity of damage received over 5 wk, did not differ significantly in their levels of chemical defenses. Also, only small changes in compensatory regrowth were detected. Finally, we did not observe changes in below-ground tissues’ defenses or biomass a week following 50% removal of leaf tissues at either age class or history of damage. Together, these results suggest that in P. lanceolata and perhaps other systems, ontogenetic trajectories in plant growth and defenses leading to strong age-dependent induced responses may prevail over herbivore-induced indirect interactions.  相似文献   

14.
Synthetic plant volatile lures attract natural enemies, but may have non-target effects due to the multifunctional nature of volatile signals. For example, methyl salicylate (MeSA) is used to attract predators, yet also serves as a signaling hormone involved in plant pathogen defense. We investigated the consequences of deploying MeSA lures to attract predators for tomato (Solanum lycopersicum) defense against herbivores. To understand the spatial distribution of the lure’s effect, we exposed tomatoes in the field to MeSA along a linear distance gradient and induced defenses by simulating feeding by hornworm caterpillars in a fully crossed factorial design (+/? MeSA, +/? herbivory). Subsequently, we analyzed activity of several defensive proteins (protease inhibitors, polyphenol oxidase, peroxidase), development of hornworm larvae (Manduca sexta), growth of fungal pathogens (Cladosporium and Alternaria), and attractiveness to herbivores and predators. Overall, MeSA-exposed plants were more resistant to both insects and pathogens. Secondary pathogen infection was reduced by 25% in MeSA exposed plants, possibly due to elevated polyphenol oxidase activity. Interestingly, we found that lures affected plant pathogen defenses equivalently across all distances (up to 4 m away) indicating that horizontal diffusion of a synthetic volatile may be greater than previously assumed. While thrips avoided colonizing hornworm– damaged tomato plants, this induced resistance was not observed upon pre-exposure to MeSA, suggesting that MeSA suppresses the repellant effect induced by herbivory. Thus, using MeSA lures in biological control may inadvertently protect crops from pathogens, but has mixed effects on plant resistance to insect herbivores.  相似文献   

15.
Prevalence of Chemical Defenses among Freshwater Plants   总被引:1,自引:0,他引:1  
Although macrophyte–herbivore interactions in freshwater systems were generally disregarded for many years, recent data suggest that herbivory can be intense and important in structuring freshwater communities. This has led to the hypothesis that chemical defenses should be common among freshwater plants, but few studies have reported such chemical defenses, and no previous studies have assessed the frequency of chemical defenses among a substantial number of freshwater plant species. In a study of 21 macrophyte species co-occurring with the omnivorous crayfish Procambarus acutus in a southeastern USA wetland environment, we found that extracts of 11 species (52%) deterred feeding by P. acutus when tested in artificial foods at natural concentrations. Of these 11 chemically defended species, one species, Eupatorium capillifolium, consistently had a more unpalatable extract following mechanical damage to plant tissue, indicative of an activated chemical defense. Because herbivores are commonly nitrogen-limited and select food based on several plant traits, including plant nutritional value, it might be expected that chemical defenses would be especially important for protein-rich plants. However, we found no relationship between soluble protein concentration and deterrence of plant extracts.  相似文献   

16.
Condensed tannins have been considered to be important inducible defenses against mammalian herbivory. We tested for differences in condensed tannin defenses in Acacia drepanolobium in Kenya over two years among different large mammalian herbivore treatments [total exclusion, antelope only, and megaherbivore (elephants and giraffes) + antelope] and with four different ant symbiont species on the trees. We predicted that (1) condensed tannin concentrations would be lowest in the mammal treatment with the lowest level of herbivory (total exclusion), (2) trees occupied by mutualist ants that protect the trees most aggressively would have lower levels of tannins, and (3) if chemical defense production is costly, there would be a trade-off between tannin concentrations, growth, and mechanical defenses. Mean tannin concentrations increased from total exclusion treatments to wildlife-only treatments to megaherbivore + antelope treatments. In 1997, condensed tannin concentrations were significantly lower in trees occupied by the ant Crematogaster nigriceps, the only ant species that actively removed axillary buds. Contrary to our prediction, trees occupied by ant species that protect the trees more aggressively against mammalian herbivores did not have lower overall levels of condensed tannins. There was no consistent evidence of a trade-off between tannin concentrations and growth rate, but there was a positive correlation between mean thorn length and mean tannin concentrations across species of ant inhabitants and across herbivore treatments in 1997. Contrary to our expectation, trees had higher tannin concentrations in the upper parts of the canopy where there is little herbivory by mammals.  相似文献   

17.
Constraints on effectiveness of cyanogenic glycosides in herbivore defense   总被引:1,自引:0,他引:1  
Cyanogenesis is the process by which hydrogen cyanide is released from endogenous cyanide containing compounds. Many cyanogenic plants release HCN in sufficient quantities to be toxic and, as a result, tend to be avoided by herbivores. However, there are many exceptions with some herbivores either immune to the cyanogenic status of the plant, or in some cases attracted to cyanogenic plants. This has led to a certain degree of scepticism regarding the role of cyanogenic glycosides as defense compounds. In this review, we examine evidence showing that differences in the effectiveness of cyanogenic glycosides in deterring herbivory can usually be reconciled when the morphology, physiology, and behavior of the animals, together with the concentration of cyanogenic glycosides in the host plant, are taken into account. Cyanogenic glycosides are not effective against all herbivores, and not all cyanogenic plants release enough cyanide to be considered toxic. Nevertheless, they do form part of the broad spectrum of toxic and distasteful compounds that herbivores must accommodate if they are to feed on cyanogenic plants.  相似文献   

18.
We evaluated the costs and benefits of continuous high-level expression of defenses relative to naturally-induced defenses in field-grown Datura wrightii in the presence and absence of herbivores. We induced D. wrightii plants with monthly applications of the plant hormone methyl jasmonate (MeJA) and assessed levels of inducible proteinase inhibitors (Pins). MeJA application increased Pin production by 124?%, whereas the increase in Pins due to herbivory was more modest (36?%). Pin induction was costly and significantly reduced plant fitness compared to unmanipulated plants both in the presence and absence of herbivores. Although MeJA-treated plants exposed to herbivory suffered significantly less herbivore damage than unmanipulated plants exposed to herbivory, this was not accompanied by a corresponding fitness benefit. In contrast to glasshouse studies in which protected plants never expressed Pins, Pin induction occurred in field-grown plants not treated with MeJA and completely protected from herbivory. Subsequent experiments confirmed that putative herbivore defenses can be induced abiotically in D. wrightii as: 1) Pin levels did not differ significantly between field-grown plants protected from herbivory and plants exposed to chronic herbivory over the full season; and 2) plants exposed to ambient UV-B light in the absence of herbivory expressed low levels of Pins after two wk of exposure, whereas plants protected from UV-B remained uninduced. The costs of induced responses may be relatively easily determined under field conditions, but there may be many inducing agents in the field, and the benefits of induction may be difficult to associate with any single inducing agent.  相似文献   

19.
Jasmonate in Lepidopteran Larvae   总被引:1,自引:0,他引:1  
Jasmonic acid (JA) is a key molecule initiating plant defensive responses to herbivory. Our previous work has shown that this phytohormone is often present at high concentrations in eggs and neonates of lepidopteran species. In this work, we document the concentrations of JA found in various tissues of larval H. virescens fed on artificial diets with varying JA concentrations and on transgenic tobacco lines with different capabilities of producing JA. At high JA concentrations, excess jasmonate appeared to be voided in frass, but significant amounts were found in most larval tissues we analyzed as well as in regurgitant. At lower concentrations, caterpillars excreted less JA and appeared to accumulate relatively greater amounts of JA in their tissues. In both experiments, substantial amounts of JA were found in labial salivary glands, a notable result since JA is an important signaling molecule involved in the induction of plant defenses.  相似文献   

20.
We tested in the field the hypothesis that the specialist butterfly Euphydryas aurinia (Lepidoptera: Nymphalidae, Melitaeinae) lays eggs on leaves of Lonicera implexa (Caprifoliaceae) plants with greater iridoid concentrations. We conducted our investigations in a Mediterranean site by analyzing leaves with and without naturally laid egg clusters. There were no significant differences in iridoid glycoside concentrations between leaves from plants that did not receive eggs and the unused leaves from plants receiving eggs, a fact that would seem to indicate that E. aurinia butterflies do not choose plants for oviposition by their iridoid content. However, the leaves of L. implexa that bore egg clusters had dramatically greater (over 15-fold) concentrations of iridoid glycosides than the directly opposite leaves on the same plant. These huge foliar concentrations of iridoids (15% leaf dry weight) may provide specialist herbivores with compounds that they either sequester for their own defense or use as a means of avoiding competition for food from generalist herbivores. Nevertheless, it may still be possible that these high concentrations are detrimental to the herbivore, even if the herbivore is a specialist feeder on the plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号