首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
通过研究不同固溶温度对Inconel690合金硬度、晶粒度和析出相的影响,以期确定Inconel690合金固溶工艺.研究结果表明:固溶温度对Incone1690合金硬度有比较明显的影响,而对晶粒度影响很大.温度超过1070℃时,发生晶粒显著长大现象.从理论计算和扫描电镜分析得出Inconel690合金中(Fe,Cr,Ni)23C6碳化物的完全溶解温度范围为1070~1090℃.  相似文献   

2.
固溶处理对Inconel 690合金组织和力学性能的影响   总被引:5,自引:0,他引:5  
 研究了不同固溶处理制度对Inconel 690合金组织和力学性能的影响。结果表明:Inconel 690合金在1 050 ℃以上固溶处理时,组织充分固溶;在950~1 150 ℃温度范围内固溶处理时,晶粒正常长大,晶粒长大激活能Q=309 kJ/mol;当固溶温度为1 050 ℃,在不同固溶时间下,晶粒尺寸与室温力学性能符合Hall Petch关系式,合金强化机制主要为细晶强化。  相似文献   

3.
通过金相显微镜、扫描电子显微镜、力学试验和腐蚀试验等研究了960~1040℃固溶温度对冷轧Inconel 601合金管材微观组织和性能的影响。固溶温度从960℃升高到1040℃时,合金管再结晶晶粒尺寸逐渐长大,长大速率先慢后快,这主要与析出相的溶解和元素活度有关。此温度范围内,保温15 min的晶粒长大激活能为393.08 kJ/mol,且合金的拉伸性能与晶粒尺寸之间的关系满足Hall-Petch关系式。固溶温度约在1020℃时,硬度曲线与延伸率曲线出现交点,此时的腐蚀速率也较低且稳定。1020℃保温15 min为Inconel 601合金Φ159.2 mm×5.1 mm管的最优固溶处理工艺。  相似文献   

4.
李吉东  王岩  谷宇  王斌 《特殊钢》2021,42(3):79-82
通过光学显微镜、扫描电镜、万能拉伸试验机和硬度计等研究了 1 080~1 200℃固溶温度对热轧态Inconel 601合金微观组织和力学性能的影响.结果表明:热轧态合金基体为沿轧制方向拉长的奥氏体晶粒组织,同时弥散有少量氮化物,沿晶界有大量碳化物析出.随着固溶温度的升高,再结晶晶粒逐渐长大,碳化物缓慢溶解,强度及硬度...  相似文献   

5.
以Inconel718合金为研究对象,分别采用等离子旋转电极法(PREP)和气体雾化法(VIGA)制备了金属球形粉末,研究了不同制粉方法对粉末在热处理前后的组织和成分分布的影响,采用对流热交换原理对两种制粉方法对应的冷速进行了模拟计算。分析结果表明:采用PERP法制备的Inconel718合金粉末在氧增量、球形度及流动性方面具有一定的优势,而VIGA法制备粉末有利于提高粉末的显微硬度、细粉粒径;两种粉末经过相同的热处理工艺后,其组织变化规律相同,均析出富Nb和Mo相。模拟计算结果表明:VIGA法制备细粒径粉末的冷速明显高于PREP法对应的粉末,与实验对应的性能数据结果相吻合。  相似文献   

6.
研究了GH 2787合金在不同固溶温度处理后的组织性能.结果表明,在900、940和980℃固溶处理时,GH 2787合金的晶粒尺寸分别为20、30和40μm.当固溶温度低于γ'溶解温度时,GH 2787合金中的γ'相分布均匀,并有少量针状的η相出现.900℃固溶处理时,GH 2787合金硬度、屈服强度和拉伸强度最高.GH 2787合金的主要强化方式为γ'相沉淀强化和晶界强化.  相似文献   

7.
长期使用后的Inconel718合金涡轮盘榫齿存在着明显的高低温分界区,是涡轮盘最容易破坏的区域、在高温区由于温度的不同所发生的组织变化是不同的,主要是γ"相的长大以及γ"相向δ相、γ"相的转变过程,并有γ"相的切割碎化现象。  相似文献   

8.
研究了固溶处理对固溶-时效UNS N07718合金[/%:0.03C, 52.50Ni, 18.0Cr, 3.0Mo, 5.0(Nb+Ta), 0.90Ti, 0.50Al]显微组织及冲击性能的影响。960℃+时效处理后,针状δ相弥散分布于晶内和晶界,晶粒尺寸均匀细小,冲击功17 J;1 000℃+960℃+时效处理后,δ相尺寸增大呈针片状分布于晶界处,数量减少,晶粒尺寸增大;1 010℃+960℃+时效处理后,δ相由针状转变为颗粒状,断续分布于晶界,晶粒明显长大;1 020℃+960℃+时效处理后,颗粒状δ相全部溶解。1 010℃+ 960℃+时效处理后,样品冲击功为43 J,相较于960℃+时效,冲击功提升150%,且冲击断口呈现明显的韧窝结构。  相似文献   

9.
 为了降低Inconel 718合金的生产成本,设计了常规方案和经济方案两种试验方案:常规方案用纯金属冶炼718合金,经济方案用铌铁合金替代金属铌、用铬铁合金替代金属铬冶炼718合金。运用两种方案在真空感应炉内分别冶炼了一炉718合金并浇铸成锭,将两支铸锭按照相同的工艺参数进行扩散退火、轧制成材及热处理,随后取样进行力学性能及金相组织分析。试验结果表明,用两种方案冶炼的718合金均能满足国内优质Inconel 718合金的技术标准,且用铌铁合金替代金属铌、用铬铁合金替代金属铬冶炼的Inconel 718合金可降低18%的原料成本。  相似文献   

10.
研究了β单相区不同的固溶温度对Ti-55531合金片层组织参数及力学性能的影响规律。结果表明,经不同温度固溶处理,再经相同的时效处理后,合金的β晶粒尺寸随固溶温度的改变而改变,进而影响时效析出α片的含量及尺寸,最终导致合金力学性能的差异。当固溶温度在830~900℃之间时,随着固溶温度的升高,原始β晶粒尺寸增大,后续时效析出的α片长、宽及长宽比均先增大后减小,合金强度直线下降,塑性先降低后增加。固溶温度为860℃时,合金对应的强度塑性匹配最好。合金的断裂失效机制为以微孔聚集为主,沿晶开裂和穿晶断裂并存的混合断裂机制。  相似文献   

11.
刘文昌  陈宗霖 《特殊钢》1997,18(2):18-21
研究结果得出:Inconel718合金经1040℃固溶处理720℃8h,55℃/h炉冷,620℃8h时效后,存在缺口敏感性。该合金经970℃固溶处理和时效后没有缺口敏感性,并且屈服强度和抗拉强度随冷轧变形量的增加而提高。在1040℃+850℃(中间处理)并时效后,可以消除缺口敏感性,但合金强度随之显著降低。  相似文献   

12.
冷轧和固溶处理对改进型202不锈钢组织和力学性能的影响   总被引:1,自引:0,他引:1  
研究总冷轧变形量12.5%~46.4%和900~1150℃固溶处理对成分(%)为:0.04C,8.18Mn,15.21Cr,4.05Ni,1.65Cu,0.12N的改进型202亚稳奥氏体不锈钢3 mm板组织和性能的影响。结果表明,经总变形量46.4%冷轧后,形变诱发产生约26%α′马氏体,该钢的强度达1200 MPa;固溶处理使α′马氏体发生逆转变(α′→γ),900℃固溶可使α′马氏体完全转变成γ奥氏体并完成全部再结晶;改进型不锈钢经900~1100℃固溶处理具有预期的组织和良好的综合力学性能。  相似文献   

13.
固溶温度对403Nb钢组织和性能的影响   总被引:3,自引:0,他引:3  
研究了固溶温度(940℃-1180℃)对403Nb组织和性能的影响,结果表明:随固溶温度升高,固溶强化和回火过程合金元素碳化物析出起主要强化作用,虽然晶粒长大,但钢的强度提高;断口类型由韧性断裂转变为脆性断裂。  相似文献   

14.
研究了1050~1150℃固溶处理对20 kg真空感应炉熔炼的690镍基合金(%:0.020C、29.93Cr、9.82Fe、0.19Al、0.25 Ti、0.023Nb、0.012Mo、0.004 2N)1.0mm冷轧板的组织和力学性能的影响。结果表明,当固溶温度从1050℃提高至1100℃,平均晶粒尺寸呈线性增长,从12μm提高到29μm,超过1100℃时晶粒尺寸快速增长,1150℃时平均晶粒尺寸达58μm;1090℃以上固溶处理时,合金中富铬碳化物完全溶解;690镍基合金主要强化机制为细晶强化,随固溶温度升高,合金室温抗拉和屈服强度分别从780 MPa和400 MPa降至662.5 MPa和250MPa,伸长率由40%提高至51.75%。  相似文献   

15.
王家军  李殿国 《特殊钢》1997,18(5):12-16
研究了在500~900℃温度时效不同时间后,合金显微镜硬度变化规律。结果表明,经10%~20%冷变形后合金硬度显著提高,而且即使再经700℃高温长时间时效,形变强化效果也能保持,800℃时效时,当保时间少于2h的情况下,合金才能保持冷变形强化效果;900℃时效时,冷变形强化完全消失。  相似文献   

16.
李俊 《特殊钢》2012,33(4):64-66
研究了950~1 200℃60 min水冷的固溶处理对超级双相不锈钢S32750(/%:0.02C、0.49Si、1.03Mn、0.026S、0.001P、25.01 Cr、7.03Ni、3.80Mo、0.29N)12 mm板的组织、力学性能和耐蚀性的影响。结果表明,随固溶温度升高,钢中铁素体相增加,奥氏体相减少;在950℃加热时铁素体中析出大量σ-相,使钢的性能恶化,在1 050~1 100℃固溶处理后,钢中铁素体相和奥氏体相各占50%, S32750钢具有较好的综合力学性能和优良的耐蚀性能。  相似文献   

17.
For improving the service performance of Inconel 718 alloy,especially used as a corrosion-resistant alloy for special environment,the microstructure and mechanical property of different carbon-containing Inconel 718 alloys were investigated by the Thermo-Calc software and experiments.The experimental results indicated that the morphology,distribution and types of carbides mainly existing in the form of MC were hardly influenced by solution treatment at 1 050 ℃ for 1h.The precipitation amount and particle size of carbides decreased with the decrease of carbon content,which was the main reason resulting in the increase of ductility and toughness.In addition,moving dislocation could be restrained by the precipitation of carbides.Therefore,the strength could benefit from the precipitation strengthening of carbides when the precipitation ofγ′/γ″phase was not influenced by the precipitation of carbides.  相似文献   

18.
To study the precipitation dynamics ofδphase in Inconel 718alloy,two-stage interrupted compression method was used in the region of cold deformation temperatures and the temperatures range from 875to 975℃.The precipitation-time-temperature(PTT)curve ofδphase was obtained by analyzing the softening kinetics curves.For verifying the type of the precipitates and confirming the validity of the test,the transmission electron microscopy(TEM),scanning transmission electron microscopy(STEM)and energy dispersion spectrum(EDS)were employed.Experimental results indicated that the PTT curve forδprecipitation exhibited a typical"C"shape and the nose points of start and finish precipitation were about 5sat 920℃and 2 815sat 940℃,respectively.In addition,the nucleation ofδwas heterogeneous.The nucleation sites varied with temperatures,including dislocation,grain boundary and stacking fault withinγ″phase.Andδparticles grew quickly at higher temperature with lower density.Moreover,the driving force of nucleation was mainly including chemical free energy,interfacial energy and dislocation distorted energy.And the dislocation distorted energy could decide the density of nucleation in the strain-induced process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号