首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sk.F. Ahmed  D. Banerjee 《Vacuum》2010,84(6):837-842
Optical properties of fluorine doped diamond-like carbon (F:DLC) films deposited by the direct current plasma enhanced chemical vapor deposition (PECVD) technique were studied in detail. Surface morphologies of the F:DLC films were studied by an atomic force microscope, which indicated surface roughness increased with increase in at.% of F in the films. The chemical binding was investigated by X-ray photoelectron spectroscopic studies. Fourier transformed infrared spectroscopic studies depicted the presence of CFx (x = 1,2,3) and CHn (n = 1,2) bonding within the F:DLC films. Optical transparency and the optical band gap decreased with the fluorine incorporation in the DLC film. Optical band gap calculated from the transmittance spectra decreased from 2.60 to 1.95 eV with a variation of 0-14.8 at.% of F concentration in the diamond-like carbon films. Urbach parameter determined from the band tail of the transmittance spectra showed that it increased with the doping concentration.  相似文献   

2.
In this study, diamond-like carbon (DLC) films modified with titanium were deposited by plasma decomposition of metallorganic precursor, titanium isopropoxide in CH4/H2/Ar gas atmosphere. The obtained films were composed of amorphous titanium oxide and nanocrystalline titanium carbide, embedded in an amorphous hydrogenated (a-C:H) matrix. The TiC/TiO2 ratio in the DLC matrix was found to be dependent on the deposition parameters. The dependence of the films chemical composition on gas mixture and substrate temperature was investigated by X-ray photoelectron spectroscopy, whereas the crystallinity of TiC nanoparticles and their dimension were evaluated by X-ray diffraction. The size of TiC crystallites varied from 10 to 35 nm, depending on the process parameters. The intrinsic hardness of 10-13 GPa, elastic modulus of 170-200 GPa and hardness-to-modulus ratio of obtained coatings were measured by the nanoindentation technique. Obtained results demonstrated a correlation of mechanical properties with the chemical composition and the ratio of amorphous/crystalline phases in the films. In particular, the formation of nanocrystalline TiC with atomic concentration not exceeding 10% and with grain size between 10 nm and 15 nm resulted in significantly enhanced mechanical properties of composite material in comparison with ordinary DLC films.  相似文献   

3.
The tribological performance of nanocomposite coatings containing Ti-B-C phases and amorphous carbon (a-C) are studied. The coatings are deposited by a sputtering process from a sintered TiB2:TiC target and graphite, using pulsed direct current and radio frequency sources. By varying the sputtering power ratio, the amorphous carbon content of the coatings can be tuned, as observed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The crystalline component consists of very disordered crystals with a mixture of TiB2/TiC or TiBxCy phases. A slight increase in crystalline order is detected with the incorporation of carbon in the coatings that is attributed to the formation of a ternary TiBxCy phase. An estimation of the carbon present in the form of carbide (TiBxCy or TiC) and amorphous (a-C) is performed using fitting analysis of the C 1s XPS peak. The film hardness (22 to 31 GPa) correlates with the fraction of the TiBxCy phase that exists in the coatings. The tribological properties were measured by a pin-on-disk tribometer in ambient conditions, using 6 mm tungsten carbide balls at 1 N. The friction coefficients and the wear rates show similar behavior, exhibiting an optimum when the fraction of C atoms in the amorphous phase is near 50%. This composition enables significant improvement of the friction coefficients and wear rates (μ ∼ 0.1; k < 1 × 106 mm3/Nm), while maintaining a good value of hardness (24.6 GPa). Establishing the correlation between the lubricant properties and the fraction of a-C is very useful for purposes of tailoring the protective character of these nanocomposite coatings to engineering applications.  相似文献   

4.
Effects of substrate bias voltage and target sputtering power on the structural and tribological properties of carbon nitride (CNx) coatings are investigated. CNx coatings are fabricated by a hybrid coating process with the combination of radio frequency plasma enhanced chemical vapor deposition (RF PECVD) and DC magnetron sputtering at various substrate bias voltage and target sputtering power in the order of −400 V 200 W, −400 V 100 W, −800 V 200 W, and −800 V 100 W. The deposition rate, N/C atomic ratio, and hardness of CNx coatings as well as friction coefficient of CNx coating sliding against AISI 52100 pin in N2 gas stream decrease, while the residual stress of CNx coatings increases with the increase of substrate bias voltage and the decrease of target sputtering power. The highest hardness measured under single stiffness mode of 15.0 GPa and lowest residual stress of 3.7 GPa of CNx coatings are obtained at −400 V 200 W, whereas the lowest friction coefficient of 0.12 of CNx coatings is achieved at −800 V 100 W. Raman and XPS analysis suggest that sp3 carbon bonding decreases and sp2 carbon bonding increases with the variations in substrate bias voltage and target sputtering power. Optical images and Raman characterization of worn surfaces confirm that the friction behavior of CNx coatings is controlled by the directly sliding between CNx coating and steel pin. Therefore, the reduction of friction coefficient is attributed to the decrease of sp3 carbon bonding in the CNx coating. It is concluded that substrate bias voltage and target sputtering power are effective parameters for tailoring the structural and tribological properties of CNx coatings.  相似文献   

5.
WSex films with variable Se/W ratio were deposited by non-reactive r.f. magnetron sputtering from WSe2 target changing the applied d.c. pulsed bias conditions and substrate temperature. The structural and chemical properties were measured by cross-sectional scanning electron microscopy (X-SEM), energy dispersive analysis (EDX), X-ray diffraction (XRD), Raman and X-ray photoelectron spectroscopy (XPS). The tribological properties were measured in ambient air (RH = 30–40%) and dry nitrogen by means of a reciprocating ball-on-disk tribometer. A clear correlation was found between the Se/W ratio and the measured friction coefficient displaying values below 0.1 (in ambient air) and 0.03 (in dry N2) for ratios Se/W ≥ 0.6 as determined by electron probe microanalysis (EPMA). The results demonstrated that notable tribological results could be obtained even in ambient air (friction ≤ 0.07 and wear rate ≈10−7 mm3 Nm−1) by controlling the film microstructure and chemical composition. By incorporating carbon, wear and chemical resistance can be gained by formation of non-stoichiometric carbides and/or alloying into the defective WSex hexagonal structure. The existence of a WSe2 rich interfacial layer (either on the ball scar or embedded in the film track) was evidenced by Raman in low friction conditions. The improvement in tribological performance is therefore obtained by means of layered WSex, the formation of gradient composition from metallic W (hard) to WSe2 (lubricant) and carbon incorporation.  相似文献   

6.
Cr-C-N coatings with different compositions, i.e. (C + N)/Cr atomic ratios (x) of 0.81-2.77, were deposited using pulsed closed field unbalanced magnetron sputtering by varying the chromium and graphite target powers, the pulse configuration and the ratio of the nitrogen flow rate to the total gas flow rate. Three kinds of nanostructures were identified in the Cr-C-N coatings dependent on the x values: a nano-columnar structure of hexagonal closed-packed (hcp) Cr2(C,N) and face-centered cubic (fcc) Cr(C,N) at x = 0.81 and 1.03 respectively, a nanocomposite structure consisting of nanocrystalline Cr(C,N) embedded in an amorphous C(N) matrix at x = 1.26 and 1.78, and a Cr-containing amorphous C(N) structure at x = 2.77. A maximum hardness of 31.0 GPa and a high H/E ratio of 1.0 have been achieved in the nc-Cr(C,N)/a-C(N) nanocomposite structure at x = 1.26, whereas the coating with a Cr-containing amorphous C(N) structure had a minimum hardness of 10.9 GPa and a low H/E ratio of 0.08 at x = 2.77. The incorporation of carbon into the Cr-N coatings led to a phase transition from hcp-Cr2(C,N) to fcc-Cr(C,N) by the dissolution into the nanocrystallites, and promoted the amorphization of Cr-C-N coatings with the precipitation of amorphous C(N). It was found that a high x value over 1.0 in the Cr-C-N coatings is the composition threshold to the nanostructure transition.  相似文献   

7.
M. Balden 《Thin solid films》2011,519(12):4032-4036
Bonding structure of carbon and metal as well as nanostructural changes of metal-doped amorphous carbon films (a-C:Me) were investigated depending on metal type (W, Ti, V, and Zr), concentration (<25 at.%) and annealing temperature (< 1300 K, except W: < 2800 K). Pure C films exhibit ~ 2 nm distorted aromatic and graphene-like regions. Both increase in size with annealing. After deposition the metals have carbide-like bonding and are mainly distributed atomically disperse in an amorphous environment. Annealing leads to the formation of carbide crystallites (TiC, VC, ZrC, WC, W2C, and WC1 − x) of several nanometers. The VC particles reach the largest size up to 1300 K. All metal dopings reduce the erosion rate against oxidation (expect V) and hydrogen impact.  相似文献   

8.
The tunnelling properties in metal/diamond-like carbon (DLC)/semiconductor junctions and structural characteristics of thin DLC films produced using different electron beam conditions were studied. We show that under the same electron dose conditions, thicker DLC films were obtained using lower accelerating voltages (2 kV) than when using higher accelerating voltage (20 kV). However, under the settings used the thicker films showed worse insulating performance than the thinner films. We attribute this effect to the variation of tunnelling barrier height in DLC deposited using different accelerating voltages. DLC films with a tunnelling barrier height of up to 3.12 eV were obtained using a 20 kV electron-beam, while only 0.73 eV was achieved for 2 kV DLC films. The X-ray photoemission spectra of the C 1s core level in these films reveal components at 284.4 ± 0.1 eV and 285 ± 0.1 eV, which were identified as the sp2 and sp3 hybrid forms of carbon. The sp3/sp2 concentration ratio increased with increasing electron beam accelerating voltage. We show how this effect is responsible for the barrier height variation.  相似文献   

9.
Preparation of chameleon coatings for space and ambient environments   总被引:2,自引:0,他引:2  
Tribological coatings of yttria-stabilized zirconia (YSZ), Au, diamond like carbon (DLC) and MoS2 were synthesized using magnetron assisted pulsed laser deposition. The coatings were synthesized in four-component and three-component combinations that included YSZ/Au/DLC/MoS2, YSZ/Au/MoS2, and YSZ/Au/DLC. A range of coating compositions was studied to explore coating optimization for low friction in varying environments (dry, humid and high temperature). For four-component YSZ/Au/DLC/MoS2 coatings, the optimal compositions for friction adaptation between dry nitrogen and humid air included relatively high concentrations of the soft phase, Au (> 20 at.%), and low amounts of the hard phases, DLC and YSZ. Ex situ Raman spectroscopy analysis indicates that friction adaptation involves a combination of both lubricating species, MoS2 and carbon, where transitions of DLC to graphitic-carbon and amorphous MoS2 to its hexagonal phase occur after cycling between both room temperature humid air and dry nitrogen. In large carbon concentrations (> 30 at.%), the DLC component was found to be detrimental for friction in dry nitrogen and humid air, but promoted a longer coating wear life at 500 °C. The three-component coating of YSZ/Au/MoS2 performed well in both dry nitrogen and humid air, suggesting a synergism between Au and MoS2, where carbon was not necessary for lubrication in humid air.  相似文献   

10.
Transition metal dichalcogenides (TMD) are well known for their self lubricant properties, due to unique crystal structure, with low hardness which makes them inappropriate in applications requiring high load bearing capacity. Nevertheless, there is still a considerable potential for further improvements since other TMDs such as diselenides remain almost unknown. The WSeC coatings were deposited by either co-sputtering from WSe2 and C targets or by working in reactive mode in an Ar + CH4 atmosphere. Carbon content varied from 25 at.% up to 70 at.%, Se/W ratio of co-sputtered coatings was between 0.9 and 1.0, with no significant influence of the carbon content on their variations, while in the reactive process it reached values higher than 1.7. The hardness of the coatings was evaluated by nanoindentation, with values between 1.6 and 5.6 GPa. The structure of the coatings was analysed by X-ray diffraction in glancing mode, showing that the coatings have a quasi-amorphous structure. Finally, the selected samples were tested on pin-on-disc showing low friction properties of WSeC co-sputtered coatings.  相似文献   

11.
Ti-containing diamond-like carbon (DLC) films were deposited by plasma decomposition of CH4/Ar gas mixtures with an introduction of tetrakis(dimethylamino)titanium (TDMAT, Ti[(CH3)2N]4), which was used as a precursor of titanium. The films deposited were found to be nanocomposite coatings consisting of TiN nanocrystalline clusters and amorphous hydrocarbon (a-C:H), indicating that the nanocrystalline clusters were embedded in the DLC matrix. The crystallinity of TiN clusters, as well as the Ti atomic concentrations in the films, increased with an increase of substrate temperature. The substrate temperature applied to form a crystalline phase in the DLC matrix induced a graphitization of amorphous hydrocarbon matrix. The increase of volume fraction of TiN nanocrystalline clusters in the DLC matrix enhanced the mechanical properties of nanostructured coatings, although the graphite-like structural transition of DLC matrix happened due to the applied heating.  相似文献   

12.
Cr-doped diamond-like carbon (DLC) films were synthesized using a cathodic arc evaporation (CAE) process. The thermal oxidation behavior of Cr-doped DLC films was investigated using thermal gravimetric analysis (TGA) and differential thermal analysis (DTA). The phase identification and microstructural examinations were conducted by X-ray diffraction, scanning electron spectroscopy (SEM), transmission electron spectroscopy (TEM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) in order to understand the characteristics of Cr-doped DLC films. The as-deposited Cr-doped DLC film exhibits a lamellar structure observed by TEM. A significant weight loss of film results from the thermal oxidation of carbon occurred at 290 to 342 °C. At the temperature higher than 342 °C, slight weight gain of specimen was observed due to the thermal oxidation of the underlying CrCxNy and CrN interlayer. By heat-treated specimens from 200 to 400 °C, Raman spectra reveal the increase of ID/IG value conforming to the graphitiation process of the Cr-doped DLC films. Finally, surface reactions of the annealed films using XPS analysis were discussed.  相似文献   

13.
We present the fabrication of carbon-coated tungsten diselenide (WSe2@C) nanorods by a facile one-pot high temperature solid-state reaction in a sealed reactor, using commercially available W and Se powders as precursors as well as maleic anhydride-grafted ethylene-octene copolymer (POE-g-MA) as a carbon source. Microscopic studies including SEM, TEM and HR-TEM confirmed that WSe2 nanorods with an average diameter of 20 nm were encapsulated by carbon layers. As-prepared WSe2@C nanorods were further investigated by XRD and Raman spectra. Thermal analysis of the sealed W-Se-POE-g-MA system was performed in order to understand the chemical reaction of W and Se at high temperature in the presence of POE-g-MA. The formation mechanism of carbon-encapsulated WSe2 nanostructures was then proposed.  相似文献   

14.
Diamond-like carbon (DLC) film is a promising candidate for surface acoustic wave (SAW) device applications because of its higher acoustic velocity. A zinc oxide (ZnO) thin film has been deposited on DLC film/Si substrate by RF magnetron sputtering; the optimized parameters for the ZnO sputtering are RF power density of 0.55 W/cm2, substrate temperature of 380 °C, gas flow ratio (Ar/O2) of 5/1 and total sputter pressure of 1.33 Pa. The results showed that when the thickness of the ZnO thin films was decreased, the phase velocity of the SAW devices increased significantly.  相似文献   

15.
S.H. Tsai 《Thin solid films》2009,518(5):1480-1576
Multilayered CrAlN and SiNx films were deposited periodically by radio frequency reactive magnetron sputtering. In the CrAlN/SiNx multilayered coatings, the thickness of CrAlN layer was fixed at 4 nm, while that of SiNx layer was adjusted from 4 nm to 0.3 nm. The dependence of the SiNx layer thickness on the preferred orientation, crystalline behavior and mechanical properties of multilayered coatings were discussed with the aid of XRD patterns and HRTEM. It was demonstrated that amorphous SiNx layer transformed to a crystallized one when the thickness decreased from 4 nm to 0.3 nm. The crystalline SiNx layer grew epitaxially, formed the coherent interface with the CrAlN layer, and the columnar structure was exhibited. The critical layer thickness for the transition from amorphous SiNx to a crystallized one was found to be around 0.4 nm, and maximum hardness of 33 GPa was revealed.  相似文献   

16.
Ion beam deposited hydrogenated undoped as well as SiOx (SiOx + N2, SiOx + Ar) doped DLC thin films were deposited and evaluated as possible anti-adhesive layers for nanoimprint lithography. Film surface contact angle with water was investigated as a measure of the surface free energy and anti-sticking properties. Contact angle of the DLC films was independent of SiOx doping and ion beam energy. Air-annealing resistance in terms of the contact angle with water of the synthesized diamond like carbon films was investigated. Optical transmittance spectra of the DLC films in UV-VIS range were measured to investigate it as possible anti-sticking layers for UV imprint lithography applications. DLC films with the most promising combination of the UV absorption and anti-sticking properties were revealed. Preliminary imprint tests with uncoated and thin DLC film coated hot imprint stamps were performed.  相似文献   

17.
Kuo-Cheng Chen 《Thin solid films》2010,518(24):7320-332
Synthesis of diamond-like carbon (DLC) films with UV-induced-hydrophilicity function was studied by inductively-coupled plasma (ICP) chemical vapor deposition. Titanium tetraisopropoxide (TTIP) and oxygen gases were employed as the precursors to deposit diamond-like nanocomposite films containing titanium dioxide (TiO2) nanoparticles. X-ray diffraction and high-resolution transmission electron microscopy revealed that TiO2 nanocrystallites were formed in the DLC films when oxygen concentration was higher than TTIP concentration during deposition. The DLC nanocomposite film was hydrophobic without ultraviolet (UV) irradiation, and became highly hydrophilic under UV irradiation, exhibiting the self-cleaning effect. A very broad peak centered at 1580 cm− 1 was observed in the Raman spectra confirming the formation of DLC films. The hardness of the film was about 8 GPa with a stress of 3 GPa. ICP was essential in forming the photocatalytic TiO2 nanoparticles in the DLC matrix.  相似文献   

18.
Carbon based coatings, particularly diamond-like carbon (DLC) films are known to resist aluminum adhesion and reduce friction at room temperature. This attractive tribological behaviour is useful for applications such as tool coatings used for aluminum forming and machining. However, for those operations that are performed at elevated temperatures (e.g. hot forming) or that generate frictional heat during contact (e.g. dry machining) the suitable coatings are required to maintain their tribological properties at high temperatures. Candidates for these demanding applications include boron carbide (B4C) and DLC coatings. An understanding of the mechanisms of friction, wear and adhesion of carbon based coatings against aluminum alloys at high temperatures will help in designing coatings with improved high temperature tribological properties. With this goal in mind, this study focused on B4C and a hydrogenated DLC coatings sliding against a 319 grade cast aluminum alloy by performing pin-on-disk experiments at temperatures up to 400 °C. Experimental results have shown that the 319 Al/B4C tribosystem generated coefficient of friction (COF) values ranging between 0.42 and 0.65, in this temperature range. However, increased amounts of aluminum adhesion were detected in the B4C wear tracks at elevated temperatures. Focused ion beam (FIB) milled cross sections of the wear tracks revealed that the coating failed due to shearing along the columnar grain boundaries of the coating. The 319 Al/DLC tribosystem maintained a low COF (0.15-0.06) from room temperature up to 200 °C. This was followed by an abrupt increase to 0.6 at 400 °C. The deterioration of friction behaviour at T > 200 °C was attributed to the exhaustion of hydrogen and hydroxyl passivants on the carbon transfer layer formed on the Al pin.  相似文献   

19.
Hydrogen-free diamond-like carbon (DLC) films were prepared by means of microwave electron cyclotron resonance plasma enhanced direct current magnetron sputtering. To study the influence of enhanced plasma on film fabrication and properties, the structures as well as mechanical and electrical properties of these films were studied as a function of applied microwave power. Results showed that higher microwave power could induce higher plasma density and electron temperature. The hardness increased from 3.5 GPa to 13 GPa with a variation of microwave power from 0 W to 1000 W. The resistivity showed a drastic increase from 4.5 × 104 Ωcm at 0 W to 1.3 × 1010 Ωcm at 1000 W. The variation of the intensity ratio I(D)/I(G) and the position of the G-peak of the DLC films with respect to changes in microwave power were also investigated by Raman spectroscopy.  相似文献   

20.
Instead of the sophisticated deposition processes and boron sources reported in literature, the study used the radio frequency magnetron sputtering method to prepare boron-doped diamond-like carbon (DLC) films with p-type conduction. The adopted sputtering targets were composed of boron pellets buried in a graphite disc. The undoped DLC films prepared exhibited n-type conduction, based on the Hall-effect measurement. For boron content ≥ 2.51 at.%, the films showed semiconductor behavior converted from n-type to p-type conduction after annealing at 450 °C. B-DLC films with a boron content of 5.91 at.% showed a maximum carrier concentration of 1.2 × 1019 cm−3, a mobility of 0.4 cm2/V s, and an electrical resistivity of 1.8 Ω cm. The results of XPS and Raman spectra indicated that the motion of boron atoms was thermally activated during post-annealing, helping promote the formation of C-B bonds in the films. Moreover, the doping of boron in DLC films decreased sp3 bonding and facilitated carbon atoms to form sp2 bonding and graphitization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号