首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electronic characteristics of semiconductor-based devices are greatly affected by the local dopant atom distribution. In Mg-doped GaN, the clustering of dopants at structural defects has been widely reported, and can significantly affect p-type conductivity. We have studied a Mg-doped AlGaN/GaN superlattice using transmission electron microscopy (TEM) and atom probe tomography (APT). Pyramidal inversion domains were observed in the TEM and the compositional variations of the dopant atoms associated with those defects have been studied using APT. Rarely has APT been used to assess the compositional variations present due to structural defects in semiconductors. Here, TEM and APT are used in a complementary fashion, and the strengths and weaknesses of the two techniques are compared.  相似文献   

2.
Ni-Cr-Mo low alloy steels are being considered as alternative materials to replace the Mn-Mo-Ni low alloy steels used in reactor pressure vessels in nuclear power plants, because of their higher strength and toughness. However, the neutron irradiation occurring during reactor operation causes degradation of Ni-Cr-Mo low alloy steel. In this study, irradiation-induced clusters in a Ni-Cr-Mo model alloy irradiated in the High-flux advanced neutron application reactor (HANARO) research reactor were investigated via Atom probe tomography (APT). The irradiated specimens showed irradiation-induced hardening and embrittlement. The neutron irradiation caused Si clustering, and these spherical clusters were homogeneously distributed within the matrix. Ni was also clustered at the Si clusters. However, the other elements did not clearly exhibit clustering behavior. Si and Ni atoms were also located at the dislocations. To quantify the nano-sized clusters, a method based on the Density-based spatial clustering of applications with noise (DBSCAN) algorithm was implemented. The total number of clusters was calculated to be ~7 × 10-4 n/nm3 and the average cluster radius was less than 2 nm. The APT approach was demonstrated to be well suited for discovering the irradiation defect structures.  相似文献   

3.
Microstructural characterisation of neutron irradiated low alloy steels is important for developing mechanistic understanding of irradiation embrittlement. This work is focused on the early stages of irradiation-induced clustering in a low Cu (0.03 wt%), high Ni (∼1 wt%) weld. The weld was irradiated at a very high dose rate and then examined by atom probe (energy-compensated position-sensitive atom probe (ECOPoSAP) and local electrode atom probe (LEAP)) with supporting microstructural information obtained by small angle neutron scattering (SANS) and positron annihilation (PALA).  相似文献   

4.
Ping DH  Cui CY  Gu YF  Harada H 《Ultramicroscopy》2007,107(9):791-795
The microstructure of a newly developed Co-base superalloy with enhanced high-temperature strength has been investigated using transmission electron microscopy (TEM) and three-dimensional atom probe (3DAP) techniques. It mainly consists of a typical gamma/gamma' (FCC/L1(2)) structure and a plate-shaped AB3-type (Ni,Co,Cr)3(Ti,Al) intermetallic compound with hexagonal structure (a approximately 5.1A and c approximately 12.5A). gamma' is formed with a bimodal distribution and fine gamma' has a cuboidal morphology. Cr and Co are enriched in the gamma phase, while Ti, Al and Ni are enriched in the gamma' phase. W and Mo are more or less uniformly distributed in both gamma and gamma'. Chemical composition analysis by 3DAP suggests that the plate-shaped phase has a higher Ti and lower Al content compared to that of gamma' phase, and the concentration of Ti, Co and Ni has a periodic variation along c-axis with a period of 12.5A in the plate-shaped phase.  相似文献   

5.
Precipitation in Fe–Cr–Ni–Al–(Cu) model alloys was investigated after ageing for 0.25, 3, 10 and 100 h at 798 K. Characterization of nanoscale precipitates was performed using three-dimensional atom probe microscopy and transmission electron microscopy. The precipitates are found to be enriched in Ni and Al (Cu) and depleted in Fe and Cr. After 0.25 h of ageing the number density of precipitates is ∼8×1024 m−3, their volume fraction is about 15.5% and they are near-spherical with an average diameter of about 2–3 nm. During further ageing the precipitates in the both alloys grow, but the coarsening behaviour is different for both alloys. The precipitates of the Cu-free alloy grow much faster compared with the Cu-containing alloy and their density decreases. Precipitates in Cu-free alloy change to plate shaped even after 10 h of ageing, whereas those of Cu-containing alloy remain spherical up to 10 h of ageing. The influence of Cu addition on precipitation in these model alloys is discussed with respect to the different coarsening mechanisms.  相似文献   

6.
Hastelloy N alloy has been selected as the primary structure material for molten salt reactor. In this article, Hastelloy N alloy samples were irradiated to different doses at room temperature using 300 keV Ar+ ions. The microstructural evolution was investigated by transmission electron microscopy (TEM) and energy‐dispersive spectroscopy (EDS). Black dot defects emerged in sample irradiated at low dose (0.4 displacement per atom (dpa)), and they grew up with irradiation doses (0.4–2 dpa). A high density of small dislocation loops (nano meters in size) were observed in the sample irradiated to 4 dpa. When the ion dose increased to 12 dpa, complicated structures with defects (including dislocation lines, larger loops and smaller black dots) were observed. Dislocation networks were detected from high‐angle annular dark field (HAADF) images. Larger dislocation loops (size: 30–80 nm) were visible in the sample irradiated to 40 dpa. Irradiation with dose of 120 dpa led to the formation of face‐centered cubic nanocrystallites with preferred orientations. Microsc. Res. Tech. 77:161–169, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Whereas transmission electron microscopy (TEM) is a well established method for the analysis of thin film structures down to the sub-nanometer scale, atom probe tomography (APT) is less known in the microscopy community. In the present work, local chemical analysis of sputtered Fe/Cr multilayer structures was performed with energy-filtering transmission electron microscopy (EFTEM) and APT. The single-layer thickness was varied from 1 to 6 nm in order to quantify spatial resolution and chemical sensitivity. While both the methods are able to resolve the layer structure, even at 2 nm thickness, it is demonstrated that the spatial resolution of the APT is about a factor of two, higher in comparison with the unprocessed EFTEM data. By calculating the influence of the instrumental parameters on EFTEM images of model structures, remaining interface roughness is indicated to be the most important factor that limits the practical resolution of analytical TEM.  相似文献   

8.
During the observation of glassy cholesteric liquid crystals in transmission electron microscopy (TEM), a new contrast is created or enhanced by electron radiation which has a direct relationship with the periodic microstructure of the specimen. In this paper, we investigate the variations of the sample thickness and mass density as possible causes of this irradiation contrast. By means of observations in atomic force microscopy (AFM) coupled to TEM, we compared the surface corrugations of non-irradiated and irradiated specimens. It is shown that the final contrast is the result of several processes. including fracture during ultramicrotomy and mass loss during irradiation. Mass loss acts as an etching, and hence results in a decrease of the sample thickness. The etching depends on the initial molecular orientation, thus evidencing the latent structure. An electron channelling mechanism is suggested to explain this behaviour.  相似文献   

9.
The present paper shows that atomic force microscopy (AFM) imaging of friction force and phase lag in ambient air can be used to characterize the chemical contrast induced by electron beam (EB) irradiation on polyethylene glycol oxide (PEO) surface. Time-of-flight secondary emission mass spectroscopy measurements showed that the EB irradiation generates chemical contrast on PEO surface by decreasing the ether bond density. The AFM measurements showed smaller phase lag and lower friction and adhesive forces on the EB irradiated PEO surface, as compared to the non-irradiated PEO surface. While the chemical contrast in friction force had a linear dependence on the EB irradiation dose, the dependence of the chemical contrast in the phase lag was strongly non-linear. As the friction and adhesive forces depended on the AFM probe hydrophilicity and air humidity, the contrast in friction and adhesive forces is ascribed to different capillary condensation of ambient water vapour at the AFM tip contact with the EB irradiated and non-irradiated PEO surfaces, respectively.  相似文献   

10.
State-of-the art atom probe tomography (APT) combined with transmission electron microscopy (TEM) were used to investigate the microstructure at different stages of the ageing process of an alloy of composition (at%) Al-1.68%Cu-4.62%Li-0.33%Mg-0.1%Ag. These alloys were shown to exhibit a complex microstructure of T1 plates and several metastable phases, including θ′ and S. We will highlight the early stages of clustering, precipitate interactions and possible solute segregation at the matrix/precipitate interfaces and detail the chemical composition of the different phases.  相似文献   

11.
The structure of Al3Zr precipitates in Al‐1.0Mg‐0.6Si‐0.5Zr (in wt.%) alloy was investigated using conventional transmission electron microscopy (TEM) and high‐resolution TEM (HREM). After annealing of the alloy in the temperature range 450–540 °C, spherical precipitates of metastable L12‐Al3Zr phase appeared nearly homogeneously within the matrix, and elongated particles were found at grain boundaries. L12‐structured Al3Zr were about 20–30 nm in diameter and coherent with the matrix. Inside some of them, planar faults parallel to {100} planes were revealed by use of HREM. Most probably, these faults are an indication of the transition stage of transformation to the stable D023‐type Al3Zr phase. The elongated precipitates (about 100 nm) were identified as D022‐type Al3Zr. Energy‐dispersive X‐ray analysis showed that they contain, apart from Al, mainly Zr with small amounts of Si. The substitution of Al by Si increased the stability of the D022‐Al3Zr as compared with D023‐Al3Zr.  相似文献   

12.
Molybdenum and its alloys are potential materials for high-temperature applications. However, molybdenum is susceptible to embrittlement because of oxygen segregation at the grain boundaries. In order to alleviate the embrittlement small amounts of zirconium were alloyed to a solid solution of Mo-1.5Si alloy. Two Mo-based alloys, namely Mo-1.5Si and Mo-1.5Si-1Zr, were investigated by the complementary high-resolution methods transmission electron microscopy and atom probe tomography. The Mo-1.5Si alloy shows a polycrystalline structure with two silicon-rich intermetallic phases Mo5Si3 and Mo3Si located at the grain boundaries and within the grains. In addition, small clusters with up to 10 at% Si were found within the molybdenum solid solution. Addition of a small amount of zirconium to Mo-1.5Si leads to the formation of two intermetallic phases Mo2Zr and MoZr2, which are located at the grain boundaries as well as within the interior of the grain. Transmission electron microscopy shows that small spherical Mo-Zr-rich precipitates (<10 nm) decorate the grain boundaries. The stoichiometry of the small precipitates was identified as Mo2Zr by atom probe tomography. No Si-enriched small precipitates were detected in the Mo-1.5Si-1Zr alloy. It is concluded that the presence of zirconium hinders their formation.  相似文献   

13.
Ion milling is commonly used to prepare specimens for observation under transmission electron microscope (TEM). This technique sometimes introduces artifacts in specimens contributing to misleading interpretation of TEM results as observed in the present investigation of Al-Li-Cu alloys. This type of alloy, in general, contains several kinds of precipitates, namely δ′ T1, and θ′. It is found that ion milling even for a short time produces drastic changes in the precipitate characterics as compared to standard electropolishing methods of specimen preparation for TEM. Careful analysis of selected area diffraction patterns and micrographs shows that after ion milling δ′ precipitates are very irregular, whereas other precipitates coarsen and they are surrounded by misfit dislocations. In situ hot-stage TEM experiments were performed to relate the microstructure to that observed in the ion-milled specimen. Results and causes of ion milling effects on the microstructure are discussed in relation to standard electropolishing techniques and in situ hot-stage experiment.  相似文献   

14.
The microstructure of Cu80Fe10Ni10 (at%) granular ribbon was investigated by means of atom probe tomography (APT). A granular system is composed of magnetic precipitates embedded in a non-magnetic matrix. In this ribbon, the magnetic precipitates have a diameter smaller than 5 nm in the as-spun state, and their crystallographic structure is very similar to the one of the matrix, which makes it difficult to characterize them using conventional techniques. Those data are of great importance to understand the magnetic and the transport behaviour of these ribbons. Using atom probe tomography, a 3D reconstruction of the microstructure of the as-spun and annealed ribbons was achieved and a precise characterization of the compositions of the two phases and of the composition profile at interfaces was carried out. In the as-spun state the composition of the matrix is Cu89Fe3Ni8, the one of the precipitates is Cu30Fe40Ni30. Upon annealing, the precipitates get enriched in iron. After annealing at 600 °C for 24 h, the measured compositions are close to the one predicted by Thermocalc, with Cu94Fe1Ni5 for the matrix and Cu5Fe64Ni31 for the precipitates.  相似文献   

15.
Song SA  Zhang W  Sik Jeong H  Kim JG  Kim YJ 《Ultramicroscopy》2008,108(11):1408-1419
The phase transition phenomena of Ge2Sb2Te5 chalcogenides were investigated by in situ dynamic high-resolution transmission electron microscopy (HR-TEM) and electron energy loss spectroscopy (EELS). A 300kV field emission TEM and a 1250kV high voltage TEM were employed for the in situ heating experiments from 20 to 500 degrees C for undoped and 3wt% nitrogen-doped Ge2Sb2Te5 thin films deposited by DC sputtering. Crystallization of amorphous Ge2Sb2Te5 to its cubic structure phase started at 130 degrees C and then rapid crystal growth developed from cubic to hexagonal phase in the range of 130-350 degrees C; finally, the hexagonal crystals started to melt at 500 degrees C. For nitrogen-doped Ge2Sb2Te5, its crystallization from amorphous film occurred at higher temperature of ca. 200 degrees C, and the cubic and hexagonal phases were usually formed simultaneously without significant growth of crystals at further heating to 400 degrees C. EELS measurements showed that the electronic structures of Ge, Sb and Te stayed almost the same regardless of the amorphous, FCC and hexagonal phases. The nitrogen doped in Ge2Sb2Te5 was confirmed to exist as a nitride. Also, the doped nitrogen distributed homogeneously in both amorphous and crystalline phases. Localization of doped nitrogen was not found in the grain boundary of crystallized phases. The dynamic process of phase transition was enhanced by high-energy electron irradiation. Peeling of atomic layers in nitrogen-doped Ge2Sb2Te5 film was detected during heating assisted with electron beam irradiation.  相似文献   

16.
The initial stage of decomposition of homogenized Cu–1.7 at% Fe at 722 K was investigated by means of field ion microscopy (FIM), atom probe tomography (APT) and computer-assisted field ion image tomography (cFIIT). The agglomeration of atoms depending on time could be investigated and the growth of precipitates with a diameter of few nanometers was observed during ongoing nucleation.  相似文献   

17.
High-dispersed nanoscale Cu precipitates often contribute to extremely high strength due to precipitation hardening,and whereas usually lead to degraded toughness for especially ferritic steels.Hence,it is important to understand the formation behaviors of the Cu precipitates.High-resolution transmission electron microscopy(TEM) is utilized to investigate the structure of Cu precipitates thermally formed in a high-strength low-alloy(HSLA) steel.The Cu precipitates were generally formed from solid solution and at the crystallographic defects such as martensite lath boundaries and dislocations.The Cu precipitates in the same aging condition have various structure of BCC,9 R and FCC,and the structural evolution does not greatly correlate with the actual sizes.The presence of different structures in an individual Cu precipitate is observed,which reflects the structural transformation occurring locally to relax the strain energy.The multiply additions in the steel possibly make the Cu precipitation more complex compared to the binary or the ternary Fe-Cu alloys with Ni or Mn additions.This research gives constructive suggestions on alloying design of Cu-bearing alloy steels.  相似文献   

18.
The application of spectrum imaging multivariate statistical analysis methods, specifically principal component analysis (PCA), to atom probe tomography (APT) data has been investigated. The mathematical method of analysis is described and the results for two example datasets are analyzed and presented. The first dataset is from the analysis of a PM 2000 Fe–Cr–Al–Ti steel containing two different ultrafine precipitate populations. PCA properly describes the matrix and precipitate phases in a simple and intuitive manner. A second APT example is from the analysis of an irradiated reactor pressure vessel steel. Fine, nm-scale Cu-enriched precipitates having a core-shell structure were identified and qualitatively described by PCA. Advantages, disadvantages, and future prospects for implementing these data analysis methodologies for APT datasets, particularly with regard to quantitative analysis, are also discussed.  相似文献   

19.
Three-phase NiAlV alloys were investigated using a three-dimensional atom probe. Ageing at 800 °C gives rise to the precipitation of two ordered phases within the supersaturated FCC solid solution, namely Ni3Al (L12 structure) and Ni3V (DO22 structure). The DO22 phase has three orientation variants which need to be identified in 3DAP images. It is shown that an appropriate choice of analysis site enables us to image the chemical order within both L12 and DO22 ordered phases and to distinguish the three orientation variants of the DO22 phase in reconstructed images. The lateral resolution of 3DAP in these experimental conditions was estimated through simple considerations to be less than 0.3 nm.  相似文献   

20.
A model Al-3Cu-(0.05 Sn) (wt%) alloy containing a bimodal distribution of relatively shear-resistant θ′ precipitates and shearable GP zones is considered in this study. It has recently been shown that the addition of the GP zones to such microstructures can lead to significant increases in strength without a decrease in the uniform elongation. In this study, atom probe tomography (APT) has been used to quantitatively characterise the evolution of the GP zones and the solute distribution in the bimodal microstructure as a function of applied plastic strain. Recent nuclear magnetic resonance (NMR) analysis has clearly shown strain-induced dissolution of the GP zones, which is supported by the current APT data with additional spatial information. There is significant repartitioning of Cu from the GP zones into the solid solution during deformation. A new approach for cluster finding in APT data has been used to quantitatively characterise the evolution of the sizes and shapes of the Cu containing features in the solid solution solute as a function of applied strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号