首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of malting on β‐glucan and phytate were investigated in one naked and one covered barley by a full factorial experiment with three factors (steeping temperature, moisture content and germination temperature) each with two levels. Analysis of total content of β‐glucan in the malted samples showed small changes after steeping at the high temperature (48 °C), while steeping at the lower temperature (15 °C) gave a significantly lower content. This trend was even stronger for β‐glucan unextractable at 38 °C. Analysis of the activity of β‐glucanase for the samples steeped at 15 °C showed a strong increase over the time of germination, while those steeped at 48 °C had a much slower development. The other two factors influenced the outcome to a small extent, mainly because the steeping temperature was the most important factor overall where any changes in β‐glucan and β‐glucanase were observed. When β‐glucan was extracted at 100 °C, a larger yield was obtained, and this was influenced by the steeping temperature in a much stronger way than for β‐glucan extracted at 38 °C. Determination of average molecular weight for β‐glucan extracted at 100 °C gave a lower value for samples steeped at 15 than at 48 °C. The design did not have any large effects on phytate degradation and phytase activity. However, it indicated that selective control of the enzymes might be possible, since phytase activity was barely affected by the parameters studied, while β‐glucanase was heavily affected. © 2002 Society of Chemical Industry  相似文献   

2.
The beneficial role of dietary fibre in human nutrition has lead to a growing demand for incorporation of novel fibres, particularly barley β‐glucans, into foods. Barley β‐glucans are regarded as dietary fibre ingredients that are partially soluble in water. The aim of the present work was to investigate the possibility of using barley β‐glucan in milk systems in relation to the coagulation properties of milk containing β‐glucan, and to the rheology, texture and microstructure of fresh curds. The rate of coagulation and optimum coagulum cutting time were evaluated using rheological measurements. Results show that coagulation/gelation time of the milk can be reduced significantly with the incorporation of β‐glucan; curd yield increased and the viscoelastic properties of the curd were altered with β‐glucan additions. The relationships between curd rheological behaviour and its microstructure are discussed in relation to use of novel hydrocolloids in dairy processing. The results suggest that barley β‐glucan has the potential to be used as a fat replacer in low‐fat dairy systems. Copyright © 2004 Society of Chemical Industry  相似文献   

3.
To gain further technological knowledge of mashing, pilot scale mashing trials were carried out varying mashing programme (upward/isothermal mashing), milling procedure, grist:liquor ratio, time of mash stands, and grist modification level (well and poorly modified malt). During mashing β‐glucan, free amino nitrogen (FAN) and extract contents were analysed as key indicators for cytolysis, proteolysis, and amylolysis, respectively. The malt modification was of major impact for the β‐glucan release in contrast to a variation of milling procedure and of grist:liquor ratio. Extended stands lead to increased final values only for poorly modified malt. Similarly, FAN release was predetermined by malt modification while variation of milling and of grist:liquor ratio was not relevant in contrast to stand extension. None of the variations applied influenced extract yield as long as gelatinization temperature was reached. Greatest gains occurred around 57°C. In conclusion, wort quality is critically determined by malt modification. Mashing with well modified malt in combination with short stands should result in a mash of low β‐glucan and sufficient FAN level without losing extract yield. However, for poorly modified malt the variation of mashing parameters has an impact on the key indicators in which cytolysis plays the dominating role.  相似文献   

4.
This study explored the dose‐dependent effect of oat cereal β‐glucan on improving metabolic indexes of obesity mice. C57‐Bl mice were randomized to chow diet (N) group and high fat diet group and other three doses of oat β‐glucan groups (low β‐glucan, medium β‐glucan, and high β‐glucan). Energy intake, glucose, lipids, and appetite related hormones were tested. Dose‐dependent relation was observed on oat β‐glucan doses and body weight change, average energy intake, total cholesterol, HDL cholesterol, plasma neural peptide Y, arcuate neural peptide Y mRNA, and arcuate neural peptide Y receptor 2 mRNA level. Oat β‐glucan helped to increase plasma peptide Y‐Y and intestine peptide Y‐Y expression in obesity mice.  相似文献   

5.
The effects of concentration and molecular weight of oat β‐glucans on properties of soya bean protein isolate (SPI) thermal gels prepared by heating at 90℃for 30 min were investigated. Compared with control (free of β‐glucan) formulations, the presence of β‐glucans (0.5–1.5%, w/v) largely enhanced storage modulus (G′) and texture properties of SPI (12%, w/v) thermal gels measured by dynamic oscillatory rheometry and texture profile analysis, which were developed as increasing β‐glucan concentration and molecular weight. It is possible that β‐glucans could cause the formation of protein aggregates to produce gels through hydrophobic interactions. Mixed gel systems at low ionic strength showed higher G′ resulting from the lower denaturation temperature of SPI, which was beneficial to the formation of gel structure. In addition, although adding a certain amount of β‐glucan into SPI reduced water‐holding capacity of mixed gels, high molecular weight of β‐glucan improved their water‐holding capacity compared to control formulations attributed to the improvement of the structural integrity of the mixed gel network.  相似文献   

6.
BACKGROUND: β‐Glucan is a bioactive component of cereal grains that has many potential uses and health‐promoting benefits. Recent research has focused on improving the nutritional value of food by increasing human exposure to β‐glucan. This study looks at the development of a farm‐level baseline model (including scenario analysis) to evaluate the impact of pre‐ and postharvest stages (including genotypic factors, environmental conditions, agronomic factors and storage) on β‐glucan levels in barley. Monte Carlo simulation techniques were employed to model various stages in pre‐ and postharvest processes and to simulate the factors influencing the level of β‐glucan content in both hulled barley (HB) and hull‐less barley (HLB) genotypes. RESULTS: The baseline model found that the mean simulated level of β‐glucan was 40.99 and 56.77 g kg?1 for HB and HLB genotypes respectively. A sensitivity analysis highlighted that genotype was the most important parameter in determining the final β‐glucan content (correlation coefficients of 0.66 and 0.78 for HB and HLB respectively), more so than any of the agronomic factors analysed. The scenario analysis highlighted the importance of harvest date (scenario 2) and storage conditions (scenario 3), with a potential 32.6 and 32.7% decrease in β‐glucan (compared with the baseline model) if harvesting is carried out early during physiological maturity (i.e. at growth stage 92) and a potential 20.1 and 19.5% increase in β‐glucan for HB and HLB respectively if storage time is minimised. CONCLUSION: This study predicted the influence of genotypic, pre‐ and postharvest operations on β‐glucan content and thus allows strategies to be identified to influence β‐glucan content in barley products. Copyright © 2008 Society of Chemical Industry  相似文献   

7.
BACKGROUND: β‐Glucans have enjoyed renewed interest as a functional food ingredient, with current attention focused on optimising β‐glucan levels in finished products without compromising final product quality. In order to measure the uncertainty about the level of β‐glucans in barley, two different statistical methods (Bayesian inference and Bootstrap technique) were applied to measured levels of β‐glucan in three different varieties of barley grain (n = 83). RESULTS: The resulting probability density distributions were similar for the full data set and also when applied to smaller sample sizes, highlighting the potential for either method in quantifying the total uncertainty in β‐glucan levels. Bayesian inference was used to model the effect of nitrogen treatment on β‐glucan and protein contents in barley. The model found that a low level of fertilisation (50 kg N ha?1) did not have a significant effect on β‐glucan or protein content. However, fertilisation above this level did result in an increase in β‐glucan and protein levels, the effect seeming to plateau at 100 kg N ha?1. In addition, the uncertainty distributions were significantly different for two consecutive years of data, highlighting the potential environmental influence on β‐glucan content. CONCLUSION: The model developed in this study could be a useful tool for processors to quantify the uncertainty about the initial level of β‐glucan in barley and to evaluate the influence of environmental factors, thus enabling them to formulate their ingredient base to optimise levels of β‐glucan without compromising final product quality. Copyright © 2009 Society of Chemical Industry  相似文献   

8.
Use of organic solvents to extract phenolic compounds from plants may result in environmental pollution and cause health problems in persons. Replacing organic extraction solvents by green extracting agents without affecting the extraction yield is one of the most pressing problems to be solved. The aim of this study is to evaluate the capacity of β‐cyclodextrin (β‐CD) to recover phenolic compounds from tea leaves. The extract obtained using the ethanol/water mixture presented the highest total phenolic content, followed by those obtained using β‐CD solution and water. HPLC analysis of the extracts showed that the addition of β‐CD to the extracting agent had a selective effect on the extraction of epigallocatechin gallate (EGCG) and epicatechin gallate (ECG). The extraction yield of EGCG and ECG using 15 g/L β‐CD were higher than that obtained using water and 50% ethanol. Molecular docking results indicated that the molecules of EGCG and ECG were more inclined to interact with β‐CD than epigallocatechin, epicatechin, and gallocatechin. The impact of β‐CD concentration, temperature, and time on EGCG and ECG extraction from tea leaves was investigated and the maximum amount of EGCG (118.7 mg/g) and ECG (54.6 mg/g) were achieved when extracted with 25 g/L aqueous β‐CD solution at 60 °C for 60 min. The present study indicates that aqueous β‐CD can be used as an alternative to organic solvents to recover EGCG and ECG from tea leaves.  相似文献   

9.
Foods containing barley or oats are often marketed as healthy because of the dietary fiber (1→3) (1→4)‐β‐D‐glucan. Processing conditions can affect the molecular structure of these dietary fibers, which in turn affect quality and properties of the products. In this study, the effect of puffing and jet cooking conditions on changes in the solubility and molecular weight of barley β‐glucans was investigated. Barley flour was processed in a pasta extruder to produce particles similar in size and shape to rice. These particles were puffed at 230, 250 and 270C for 6, 8 and 10 s in a rice cake machine. Solubility and molecular weight of barley β‐glucans were determined by using water extracts (25 or 65C). The amount of β‐glucan extracted in water at 25C increased from 41.1% in cakes puffed at 230C/6 s to 69.7% in cakes puffed at 270C/10 s. The amount of β‐glucan extracted in water at 65C increased from 63.6% in samples puffed at 230C/6 s to 99.1% in samples puffed at 270C/10 s. The molecular weight of β‐glucans in barley was reduced by puffing and jet cooking treatments.  相似文献   

10.
The paper presents a measurement system that is based on an array of non‐specific sensors and the installation of both in a pilot and in an industrial mash tun. Three calibration strategies were pursued to predict gravity, FAN and β‐glucan during mashing in combination with three different multivariate calibrations (PCR, CPCR, PLS). The over all best calibration had RMSPEs of 0.78%, 1.56 mg/100 mL and 181.73 mg/L for gravity, FAN and β‐glucan, respectively. The measurement system makes it possible to monitor online the three major sub‐processes of mashing (amylolysis, proteolysis, and cytolysis), which is the precondition for a situational control of the mashing process.  相似文献   

11.
The innate immune system responds in a rapid and non‐specific manner against immunologic threats; inflammation is part of this response. This is followed by a slower but targeted and specific response termed the adaptive or acquired immune response. There is emerging evidence that dietary components, including yeast‐derived β‐glucans, can aid host defense against pathogens by modulating inflammatory and antimicrobial activity of neutrophils and macrophages. Innate immune training refers to a newly recognized phenomenon wherein compounds may “train” innate immune cells, such that monocyte and macrophage precursor biology is altered to mount a more effective immunological response. Although various human studies have been carried out, much uncertainty still exists and further studies are required to fully elucidate the relationship between β‐glucan supplementation and human immune function. This review offers an up‐to‐date report on yeast‐derived β‐glucans as immunomodulators, including a brief overview of the current paradigm regarding the interaction of β‐glucans with the immune system. The recent pre‐clinical work that has partly decrypted mode of action and the newest evidence from human trials are also reviewed. According to pre‐clinical studies, β‐1,3/1,6‐glucan derived from baker's yeast may offer increased immuno‐surveillance, although the human evidence is weaker than that gained from pre‐clinical studies.  相似文献   

12.
The presence of added β‐glucan in wort caused increased turbidity levels, which increased at higher molecular weights and concentrations of the polymer. Levels of pH, maltose and ethanol, and shear experienced in a brewery also influenced the turbidity of wort and beer. Haze levels of beer after 0.45 μm membrane filtration were found to decrease due to the removal of non‐β‐glucan particles. Cold storage at 4°C for two weeks was found not to lower the turbidity caused by high concentrations of high molecular weight β‐glucan polymers.  相似文献   

13.
BACKGROUND: Normal pressure steaming (NPS), autoclaved steaming (AS), and hot‐air roasting (HAR) are widely used to deactivate oat enzyme in the oat‐processing industry. Infrared roasting (IR) is a new oat deactivation method, and is welcomed and employed by increasing numbers of oat‐processing plants in China. It is widely known that oat starch plays an important role in the processing function of oat food, and that oat β‐glucan and lipid contribute greatly to the health benefits of oat food. However, the effects of steaming and roasting treatments on the starch, β‐glucan and lipid in oat kernels are poorly known. RESULTS: In this research, the level and distribution of β‐glucan and lipid in oat kernels with and without deactivation treatments were tested. We also measured the viscosity properties of oat flour from kernels after NPS, AS, HAR and IR treatments, and examined the effects of these treatments on oat starch granularity using scanning electron microscopy. The results showed that the deactivation treatments did not have significant effects on oat β‐glucan and lipid levels in oat kernels (P < 0.01). The distribution of β‐glucan and lipid in enzyme‐deactivated kernels was very similar to that in normal kernels. NPS, AS, HAR and IR treatments changed the shape of starch granules, crumbled large starch granules, reduced the connection between the protein network and starch granules, and improved starch gelatinization properties. CONCLUSIONS: NPS, AS, HAR and IR treatments can change the structure of oat starch granules and improve the viscosity property of oat starch without causing β‐glucan and lipid loss to oat food. Copyright © 2010 Society of Chemical Industry  相似文献   

14.
The methods for laboratory and commercial milling of dehulled barley grain are described. In the laboratory‐scale barley at 10%, 12% and 14% moisture, was milled to produce three fine‐products (flours) and two coarse‐products (grits). The yield of flours and grits was about 40% and 60%, respectively. Increased products yield and the β‐glucan content in products with increasing moisture of ground grain were observed. Barley at 14% moisture was milled under commercial conditions to produce the following end‐products: fine‐ and coarse‐grained flours, middlings and fine grits. These products differed in their average contents of β‐glucans, total dietary fiber, ash and protein. The fine‐grained grit from impact milling coarse grit had the highest contents of β‐glucans, total dietary fiber, ash and protein. This product, with a weight yield of 18.6%, contained 6.72% β‐glucans, 25.12% total dietary fiber, 2.19% ash, and 15.83% protein. All these values were at about 50%, 72%, 55% and 24%, respectively higher than in dehulled barley. Lowest contents of chemical components in fine‐grained flours were found. Developed method of commercial milling of barley will allow to obtain new, nutritionally valuable barley products, which have potential for use in human foods.  相似文献   

15.
Whole oat flour, N979‐5‐2‐4 (N979), IA95111 (IA95), ‘Jim’ and ‘Paul’ with β‐glucan concentration of 8.6%, 7.6%, 5.3%, and 5.9%, respectively, was made into extruded breakfast cereal (EBC). EBC β‐glucan had greater peak molecular weight than corresponding whole oat flour. Both whole oat flour and EBC from N979 and IA95 had greater peak viscosity (PV), as measured using a Rapid ViscoAnalyser, than that from Jim or Paul. Bile acid binding of EBC, correlated with total β‐glucan concentrations and PV, was either similar or greater than that of corresponding whole oat flour. Jim EBC had the least expansion ratio, lowest brown colour and cereal aroma but greatest tooth packing values. Paul and N979 EBC, although different from each other in a few sensory attributes, had similar acceptability as judged from a consumer test, suggesting that oats with elevated β‐glucan concentrations can be successfully incorporated into EBC with minimal processing alterations.  相似文献   

16.
This paper reports on the influence of molecular weight and concentration of barley β‐glucans on the rheological properties of wort and beer. Environmental conditions such as pH, maltose level in wort, ethanol content of beer, shearing and shearing temperature were also examined for their effects on wort and beer viscosities. In the range of 50–1000 mg/L, β‐glucans increased solution viscosity linearly with both molecular weights (MW) of 31, 137, 250, 327, and 443 kDa and concentration. The influence of MW on the intrinsic viscosity of β‐glucans followed the Mark‐Houwink relationship. Shearing wort and beer at approximately 13,000 s?1for 35 s was found to increase the wort viscosity but reduce beer viscosity. Shearing wort at 20°C influenced β‐glucan viscosity more than shearing at 48°C and 76°C whereas the shearing temperature (0, 5 and 10°C) did not effect the viscosity of beer. At lower pHs, shearing was found to reduce the viscosity caused by β‐glucans in wort but had no effect in beer. Higher concentrations of maltose in wort and ethanol in beer also increased the viscosity of β‐glucan polymers. It was found that β‐glucans had higher intrinsic viscosities in beer than in wort (5°C), and lower critical overlap concentrations (C*) in beer than in wort.  相似文献   

17.
The effect of different steeping conditions on phytate, β‐glucan and vitamin E in barley during malting was studied by a full factorial experiment with three variables (steeping temperature, barley variety and steeping additions). Addition of lactic acid to the steeping water induced a reduction of phytate during steeping and germination, especially in combination with the high steeping temperature (48 °C). Furthermore, lactic acid and high temperature steeping inhibited β‐glucanase development, resulting in a well‐preserved β‐glucan content after germination. When steeping was conducted without addition of lactic acid, the low steeping temperature (15 °C) promoted development of both phytase and β‐glucanase activity during germination. A slightly higher level of tocopherols and tocotrienols was observed in samples steeped at 15 °C than in samples steeped at 48 °C. However, addition of lactic acid reduced the amount for both temperatures. When lactic acid bacteria were added to the steeping water none of the parameters studied differed from samples steeped with water only. The results show the possibility of combining phytate degradation with a preserved β‐glucan content during malting and can thus be of interest for development of cereal products with improved nutritional value. Copyright © 2004 Society of Chemical Industry  相似文献   

18.
The half‐grain mashing (modification) method proposed by Palmer (J. Inst. Brew., 1975, 81: 408) was reassessed. The intention was to quantify the differences in malt modification in terms of β‐glucan breakdown and clarify the relationship between β‐glucan breakdown and overall modification of the endosperm during malting. This was carried out at 45°C as well as at 65°C, the percentage of weight loss was recorded and the endosperm residue was analysed for β‐glucan content. In general, weight loss was related to modification. Samples, which were modified at higher levels, lost significantly more material during the half‐grain mashing procedure than those which were under‐modified. At a malting process time of 96 h all the varieties had similar weight loss. After mashing the half grains, the β‐glucan contents of the grain residues showed an apparent increase because of loss of non‐β‐glucan materials. However, over the malting period β‐glucan decreased. Chariot malted faster than the other varieties studied. The β‐glucan levels of this variety were reduced by 78% between 48 and 72 h of germination. Significant levels of β‐glucan were degraded and large quantities of starch and protein were released. During the same period of germination, the corresponding samples of Decanter did not show a significant reduction in β‐glucan levels. In contrast, Brazilian variety MN698 lost endosperm material and β‐glucan rapidly by 48 h. These early results suggest that during malting, extract solubilization may or may not accompany β‐glucan breakdown. Therefore, β‐glucan levels in malt cannot be used as an overall index of modification of the endosperm.  相似文献   

19.
β‐Glucans were isolated from six Greek barley cultivars (Persefoni, Kos, Thessaloniki, Athinaida, Dimitra and Triptolemos) by water extraction at 47 °C, enzymatic removal of starch and protein and subsequent precipitation of the water‐soluble β‐glucans with 37% (w/v) ammonium sulfate saturation. The purity of barley β‐glucans was high (>93% dry basis) with some small contamination by protein (<3.84%). The molecular size of the β‐glucan isolates was determined by high‐performance size‐exclusion chromatography (HPSEC); the weight‐average molecular weights and the intrinsic viscosities ranged between 0.45 × 106 and 1.32 × 106 and 2.77 and 4.11 dl g?1, respectively. Structural features of barley β‐glucans were revealed by 13C NMR spectroscopy and high‐performance anion‐exchange chromatography (HPAEC) of the oligomers released by the hydrolytic action of lichenase. Lichenase degradation showed that β‐glucans from all barley cultivars consisted of blocks of cellotriosyl and cellotetraosyl units, accounting for 90.6–92.3% of the total oligomers released, with a molar proportion of these units between 2.31 and 2.77. Rheological measurements of aqueous solutions/dispersions of β‐glucans showed the behaviour of non‐interacting polysaccharides and a transition from the typical viscoelastic response to gel‐like properties after a time period that depended on the molecular size of the polysaccharide. The lowest molecular size β‐glucans from the Triptolemos cultivar showed shorter gelation times than their higher molecular weight counterparts. The effect of sugar incorporation (glucose, fructose, sucrose, xylose and ribose), at a concentration of 30% (w/v), to the β‐glucans gels (6% w/v) on compression parameters seemed to be related to the type of sugar used; the pentose sugars substantially reduced gel firming. Copyright © 2004 Society of Chemical Industry  相似文献   

20.
The beneficial role of dietary fibre in human nutrition and effects of properties on fermented dairy products have led to a growing demand for the incorporation of novel fibre‐based fat replacers. The aim of the present work was to investigate the possibility of using inulin and oat‐based β‐glucan in Labneh cheese and to analyse the physico‐chemical, textural and sensory properties of the resulting product. The results showed that the textural and sensory properties of the cheese with addition of inulin increased at a 12% fat ratio. Overall, full‐fat and reduced‐fat Labneh cheeses were firmer and had better flavour than all the low‐fat cheeses. However, inulin and oat β‐glucan, as fermentable fibres, were also degraded as fermentable fibres to produce organic acids and had the potential for use as fat replacers in low‐fat dairy systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号