首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
The enhanced quasi-chemical kinetics (EQCK) model is presented as a methodology to evaluate the nonlinear inactivation kinetics of baro-resistant Listeria monocytogenes in a surrogate protein food system by high-pressure processing (HPP) for various combinations of pressure (P= 207 to 414 MPa) and temperature (T= 20 to 50 °C). The EQCK model is based on ordinary differential equations derived from 6 "quasi-chemical reaction" steps. The EQCK model continuously fits the conventional stages of the microbial lifecycle: lag, growth, stationary phase, and death; and tailing. Depending on the conditions, the inactivation kinetics of L. monocytogenes by HPP show a lag, inactivation, and tailing. Accordingly, we developed a customized, 4-step subset version of the EQCK model sufficient to evaluate the HPP inactivation kinetics of L. monocytogenes and obtain values for the model parameters of lag (λ), inactivation rate (μ), rate constants (k), and "processing time" (tp). This latter parameter was developed uniquely to evaluate kinetics data showing tailing. Secondary models are developed by interrelating the fitting parameters with experimental parameters, and Monte Carlo simulations are used to evaluate parameter reproducibility. This 4-step model is also compared with the empirical Weibull and Polylog models. The success of the EQCK model (as its 4-step subset) for the HPP inactivation kinetics of baro-resistant L. monocytogenes showing tailing establishes several advantages of the EQCK modeling approach for investigating nonlinear microbial inactivation kinetics, and it has implications for determining mechanisms of bacterial spore inactivation by HPP. Practical Application: Results of this study will be useful to the many segments of the food processing industry (ready-to-eat meats, fresh produce, seafood, dairy) concerned with ensuring the safety of consumers from the health hazards of Listeria monocytogenes, particularly through the use of emerging food preservation technologies such as high-pressure processing.  相似文献   

2.
ABSTRACT: Isobaric and isothermal semi‐logarithmic survival curves of natural microflora in apple juice treated with high‐pressure carbon dioxide at 7, 13, and 16 MPa pressures and 35, 50, and 60 °C temperatures were fitted with a nonlinear equation to find the values of the coefficient b(P ), b(T ), n(P ), and n(T ). Profiles of the model parameters were obtained as a function of pressure and temperature. The model fitted with good agreement (R2 > 0.945), the survival curves. An empirical equation was proposed to describe the combined effects of pressure and temperature. The equation, derived from a power law model, was written in the form: . The proposed model fitted the experimental data well. At 7 MPa and 50 and 60 °C, 13 MPa and 35 and 60 °C, 16 MPa and 35 °C, the model provided log10 reduction residual values (observed value – fitted value) lower than 0.284 showing a good agreement between the experimental and the predicted survival levels.  相似文献   

3.
本文以牡蛎为原料,研究了不同超高压处理对牡蛎体内微生物、p H、挥发性盐基氮、K值、基本成分的变化情况。实验结果显示,牡蛎经350 MPa超高压处理10 min,贮藏7 d其菌落总数符合生食标准,冷藏货架期延长至14 d;经450 MPa处理10 min的牡蛎贮藏14 d的菌落总数符合生食标准,其冷藏货架期延长至21 d。牡蛎经350 MPa超高压处理10 min贮藏14 d,或经450 MPa超高压处理10 min贮藏21 d后,TVB-N和K值仍然符合新鲜度标准。同时,超高压处理后牡蛎的营养成分基本保持不变,仍能保持其较高的营养价值。   相似文献   

4.
超高压处理对低磷酸盐鸡胸肉盐溶蛋白凝胶的影响   总被引:1,自引:0,他引:1  
李莹  王鹏  徐幸莲 《食品科学》2013,34(5):60-66
采用混料回归试验设计方法,对300MPa、25℃、10min超高压处理鸡胸肉盐溶蛋白所添加的低含量复合磷酸盐的配比情况进行研究。结果表明:为达到良好的保水性能,未经超高压处理样品的最佳复合磷酸盐配比为m(焦磷酸钠(DSPP)):m(三聚磷酸钠(STPP)):m(六偏磷酸钠(HMP))=41:42.3:16.7,高压处理样品的最佳复合磷酸盐配比为m(DSPP):m(STPP):m(HMP)=38.9:44.4:16.7。超高压处理过的鸡胸肉盐溶蛋白凝胶的保水性比未经高压处理组样品显著提高。对照组DSPP、STPP以及DSPP、HMP的协同作用对保水性的影响较大,高压组则为DSPP、HMP以及STPP、HMP的协同作用对保水性影响比较大。在100MPa时,质量分数0.15%复合磷酸盐添加的鸡肉糜制品可以达到与质量分数0.30%复合磷酸盐添加的鸡肉糜制品的保水性相似的效果,初步说明可以在生产中使用超高压处理以达到减少复合磷酸盐的添加量而不显著影响制品保水性的效果。  相似文献   

5.
In the last 2 decades high‐pressure processing (HPP) has established itself as one of the most suitable nonthermal technologies applied to fruit products for the extension of shelf‐life. Several oxidative and pectic enzymes are responsible for deterioration in color, flavor, and texture in fruit purees and juices (FP&J). The effect of HPP on the activities of polyphenoloxidase, peroxidase, β‐glucosidase, pectinmethylesterase, polygalacturonase, lipoxygenase, amylase, and hydroperoxide lyase specific to FP&J have been studied by several researchers. In most of the cases, partial inactivation of the target enzymes was possible under the experimental domain, although their pressure sensitivity largely depended on the origin and their microenvironmental condition. The variable sensitivity of different enzymes also reflects on their kinetics. Several empirical models have been established to describe the kinetics of an enzyme specific to a FP&J. The scientific literature in the last decade illustrating the effects of HPP on enzymes in FP&J, enzymatic action on those products, mechanism of enzyme inactivation during high pressure, their inactivation kinetics, and several intrinsic and extrinsic factors influencing the efficacy of HPP is critically reviewed in this article. In addition, process optimization of HPP targeting specific enzymes is of great interest from an industrial approach. This review will give a fair idea about the target enzymes specific to FP&J and the optimum conditions needed to achieve sufficient inactivation during HPP treatment.  相似文献   

6.
High‐pressure processing (HPP) is used to increase meat safety and shelf‐life, with conflicting quality effects depending on rigor status during HPP. In the seafood industry, HPP is used to shuck and pasteurize oysters, but its use on abalones has only been minimally evaluated and the effect of rigor status during HPP on abalone quality has not been reported. Farm‐raised abalones (Haliotis rufescens) were divided into 12 HPP treatments and 1 unprocessed control treatment. Treatments were processed pre‐rigor or post‐rigor at 2 pressures (100 and 300 MPa) and 3 processing times (1, 3, and 5 min). The control was analyzed post‐rigor. Uniform plugs were cut from adductor and foot meat for texture profile analysis, shear force, and color analysis. Subsamples were used for scanning electron microscopy of muscle ultrastructure. Texture profile analysis revealed that post‐rigor processed abalone was significantly (P < 0.05) less firm and chewy than pre‐rigor processed irrespective of muscle type, processing time, or pressure. L values increased with pressure to 68.9 at 300 MPa for pre‐rigor processed foot, 73.8 for post‐rigor processed foot, 90.9 for pre‐rigor processed adductor, and 89.0 for post‐rigor processed adductor. Scanning electron microscopy images showed fraying of collagen fibers in processed adductor, but did not show pressure‐induced compaction of the foot myofibrils. Post‐rigor processed abalone meat was more tender than pre‐rigor processed meat, and post‐rigor processed foot meat was lighter in color than pre‐rigor processed foot meat, suggesting that waiting for rigor to resolve prior to processing abalones may improve consumer perceptions of quality and market value.  相似文献   

7.
超高压对草莓果肉饮料的杀菌效果与品质影响   总被引:2,自引:0,他引:2  
研究不同超高压条件(压力600MPa,保压时间分别为0、2、4、6、8、10min)对草莓果肉饮料的杀菌效果及600MPa、4min超高压处理前后草莓果肉饮料理化品质的变化。结果表明:在600MPa、4min的超高压条件下,草莓果肉饮料中的细菌、霉菌和酵母可全部被杀死,并且该处理前后草莓果肉饮料中的可溶性固形物、pH值、可滴定酸、颜色、总酚含量及抗氧化性均无显著性差异(P>0.05),但VC含量损失9.2%、花青素含量损失20.6%;超高压处理后草莓果肉饮料中部分酯类成分损失,醇类物质种类及数量增加(P<0.05),但仍保持草莓原有的特征风味。  相似文献   

8.
9.
The approximately 1.5 million tons of salmon traded in 31 countries in 2008 provides clear evidence that salmon is a popular food source throughout the world. There are many methods for the preservation of salmon flesh, such as vacuum‐packaging, smoking, and freezing. Ultra‐high pressure (UHP) does not require heat, preserves the quality of salmon flesh, and allows for an increase in the chilled storage period. In this study, the quality of salmon flesh was assessed after exposure to UHP (200, 400, or 600 MPa compared with no UHP) and 30 d of storage at 4 °C. Salmon flesh quality analyses included the degree of changes in the interspacing of muscle bundles, color, texture profiles (hardness, chewiness, cohesiveness, and elasticity), and microbial growth. The use of UHP (>400 MPa) improved the color, hardness, and chewiness of the flesh. Study results suggested that the application of UHP (≥400 MPa) may be useful in preserving salmon flesh, and could be used by the salmon aquaculture and distribution industries.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号