首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The hydrolysis of fructose-1,6-bisphosphate to fructose-6-phosphate is a key reaction of carbohydrate metabolism. The enzyme that catalyzes this reaction, fructose-1,6-bisphosphatase, appears to be present in all forms of living organisms. Regulation of the enzyme activity, however, occurs by a variety of distinct mechanisms. These include AMP inhibition (most sources), cyclic AMP-dependent phosphorylation (yeast), and light-dependent activation (chloroplast). In this short review, we have analyzed the function of several fructose-1,6-bisphosphatases and we have made a comparison of partial amino acid sequences obtained from the enzymes of the yeast Saccharomyces cerevisiae, Escherichia coli, and spinach chloroplasts with the known entire amino acid sequence of a mammalian gluconeogenic fructose-1,6-bisphosphatase. These results demonstrate a very high degree of sequence conservation, suggesting a common evolutionary origin for all fructose-1,6-bisphosphatases.  相似文献   

2.
In the gluconeogenic pathway, fructose-1,6-bisphosphatase (EC 3. 1. 3. 11) is the last key-enzyme before the synthesis of glucose-6-phosphate. The extreme diversity of cells present in the whole brain does not facilitate in vivo study of this enzyme and makes it difficult to understand the regulatory mechanisms of the related carbohydrate metabolism. It is for instance difficult to grasp the actual effect of ions like potassium, magnesium and manganese on the metabolic process just as it is difficult to grasp the effect of different pH values and the influence of glycogenic compounds such as methionine sulfoximine. The present investigation attempts to study the expression and regulation of fructose-1,6-bisphosphatase in cultured astrocytes. Cerebral cortex of new-born rats was dissociated into single cells that were then plated. The cultured cells were flat and roughly polygonal and were positively immunostained by anti-glial fibrillary acidic protein antibodies. Cultured astrocytes are able to display the activity of fructose-1,6-bisphosphatase. This activity was much higher than that in brain tissue in vivo. Fructose-1,6-bisphosphatase in cultured astrocytes did not require magnesium ions for its activity. The initial velocity observed when the activity was measured in standard conditions was largely increased when the enzyme was incubated with Mn2+. This increase was however followed by a decrease in absorbance resulting in the induction, by the manganese ions, of a singular kinetics in the enzyme activity. Potassium ions also stimulated fructose-1,6-bisphosphatase activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
A rapid procedure for the purification of the redox-regulated chloroplast fructose-1,6-bisphosphatase [EC 3.1.3.11] from spinach leaf extract to homogeneity is described. No thiol-reducing agents were present during the purification and the enzyme is > 99% in the oxidized form. A rapid procedure to reduce and activate the Fru-1,6-P2ase by dithiothreitol in the absence of thioredoxin is described. Reduction activates the enzyme up to several hundred-fold when assayed at pH 8.0 with 2 mM Mg2+. The activity of the purified oxidized enzyme is unusually sensitive to changes in Mg2+ and H+ concentration. Tenfold changes in Mg2+ or H+ concentration lead to > 100-fold increases in activity. The recoveries of fructose-1,6-bisphosphatase activity as determined by the activity of the oxidized enzyme at pH 8.0/20 mM Mg2+; pH 9.0/2 mM Mg2+; pH 8/2 mM Mg2+ plus 0.1 mM Hg(II) or of the reduced enzyme at pH 8.0/2 mM Mg2+ are similar (approximately 40%) indicating that the major proportion of these activities in a leaf extract is catalyzed by the same enzyme. Moreover, antibodies raised against the purified enzyme inhibit all of the above activities in crude leaf extracts. The kinetic properties of the purified enzyme suggest that the oxidized Mg(2+)-dependent enzyme can play no significant role in photosynthetic carbon assimilation. A survey of some kinetic properties of Fru-1,6-P2ase activity in extracts of various photosynthetic organisms reveals that all 11 species examined possess a redox- and pH/Mg(2+)-stimulated Fru-1,6-P2ase, whereas Fru-1,6-P2ase in extracts of Taxus baccata (a gymnosperm), Chlorella vulgaris (a green alga), and the cyanobacterium Nostoc muscorum were not activated by Hg(II). The heat stability that proved useful in the purification of the spinach enzyme was conserved in both angiosperms and gymnosperms. The oxidized enzyme (which normally has no thiol groups accessible to 5,5'-dithio-bis[2-nitrobenzoic acid]) but not the reduced enzyme can be stimulated many hundred-fold by addition of extraordinarily low concentrations of Hg(II) to a complete assay mixture. With the aid of EDTA as a Hg(II) buffer, half-maximal stimulation was achieved at 2 x 10(-16) M free Hg(II). Methylmercury also stimulates the enzyme many hundred-fold at very low concentrations. The concentration for half-maximal stimulation by methylmercury was determined with a cyanide buffer to be approximately 10(-16) M. This, together with the high affinity of the enzyme for Hg(II), suggests that Hg(II) stimulates the enzyme by binding to an enzyme thiol group that be comes exposed in the catalytically active enzyme, thereby stabilizing the oxidized enzyme in an active conformation. By contrast, in the absence of Fru-1,6-P2 and either Mg2+ or Ca2+, Hg(II) (even at 2 x 10(-16) M) rapidly inactivates the oxidized Fru-1,6-P2ase. This inactivation is similar to the inactivation of Fru-1,6-P2ase that occurred at high pH (> 9) and which is also prevented by Fru-1,6-P2 and either Mg2+ or Ca2+. Although the Hg(II)- and high pH-inactivated oxidized enzyme has no activity, both forms of the enzyme can be activated by reduction. The usefulness of buffers to maintain low, defined Hg(II) and organic mercurial concentrations is discussed.  相似文献   

4.
The fructose-1,6-biphosphate aldolase (EC 4.1.2.13) from Staphylococcus aureus ATCC 12 600 was purified and biochemically investigated. It was found that this aldolase belongs to the class I type of aldolases since the fructose-1,6-bisphosphate cleavage activity was insensitivity to high levels of EDTA. Like class I aldolases of higher organisms, the S. aureus aldolase activity is inhibited on incubation with the substrate dihydroxyacetone-phosphate in the presence of NaBH4. Furthermore, the aldolase activity is not stimulated by monovalent or divalent cations. This enzyme exhibits an extreme stability to high temperature, acid and base. The purified enzyme is not activated after heating at 97 degrees C for 1.6 h. An incubation at 130 degrees C for 10 min is necessary to destroy irreversibly the activity of the aldolase. The optimal temperature for activity, however, is 37 degrees C. It is a monomer with a molecular weight of about 33,000 and exhibits a relatively broad pH optimum ranging over pH 7.5-9.0. Apart from fructose 1,6-bisphosphate as substrate (Km = 0.045 mM), this aldolase also revealed activity with fructose 1-phosphate (Km = 25 mM). The pH of the isoelectric point lies between 3.95 and 4.25.  相似文献   

5.
The mannitol-1-phosphate dehydrogenase (M1PDH) (EC 1.1.1.17) from Streptococcus mutans strain FA-1 was purified to approximately a 425-fold increase in specific activity with a 29% recovery of total enzyme units, using a combination of (i) streptomycin sulfate and ammonium sulfate precipitation and (ii) diethyl-aminoethyl-cellulose (DE-52), agarose A 0.5M, and agarose-nicotinamide adenine dinucleotide (NAD) affinity column chromatography. Polyacrylamide gel electrophoresis of the purified enzyme preparation showed a single protein component that coincided with a band of M1PDH activity. The enzyme had a molecular weight of approximately 45,000 and was stable for long periods of time when stored at -80 degrees C in the presence of beta-mercaptoethanol. Its activity was not affected by mono- or divalent cations, and high concentrations of ethylenedia-minetetraacetic acid were not inhibitory. The M1PDH catalyzed both the NAD-dependent oxidation of mannitol-1-phosphate and the reduced NAD (NADH)-dependent reduction of fructose-6-phosphate. The forward reaction was highly specific for mannitol-1-phosphate and NAD, whereas the reverse reaction was highly specific for NADH and fructose-6-phosphate. The K(m) values for mannitol-1-phosphate and NAD were 0.15 and 0.066 mM, respectively, and the K(m) values for fructose-6-phosphate and NADH were 1.66 and 0.016 mM, respectively. The forward and reverse reactions catalyzed by the M1PDH from S. mutans appeared to be under cellular control. Both adenosine 5'-triphosphate and fructose-6-phosphate were negative effectors of the forward reaction, whereas adenosine 5'-diphosphate served as a negative effector of the reverse reaction catalyzed by the enzyme.  相似文献   

6.
Boar sperm rapidly interconverted dihydroxyacetone phosphate and glyceraldehyde 3-phosphate, produced fructose-1,6-bisphosphate, approximately equilibrium concentrations of fructose 6-phosphate and glucose 6-phosphate but not glycerol or glycerol 3-phosphate. In the presence of 3-chloro-1-hydroxypropanone, an inhibitor of stage 2 of the glycolytic pathway, the triosephosphates were metabolized faster, produced less fructose-1,6-bisphosphate, fructose 6-phosphate and glucose 6-phosphate, but not glycerol or glycerol 3-phosphate. This suggests that these cells may have the capacity to convert glycolytic intermediates into a storage metabolite to conserve carbon atoms for the eventual synthesis of lactate.  相似文献   

7.
OBJECTIVES: Fructose-1,6-diphosphate is a glycolytic intermediate that has been shown experimentally to cross the cell membrane and lead to increased glycolytic flux. Because glycolysis is an important energy source for myocardium during early reperfusion, we sought to determine the effects of fructose-1,6-diphosphate on recovery of postischemic contractile function. METHODS: Langendorff-perfused rabbit hearts were infused with fructose-1,6-diphosphate (5 and 10 mmol/L, n = 5 per group) in a nonischemic model. In a second group of hearts subjected to 35 minutes of ischemia at 37 degrees C followed by reperfusion (n = 6 per group), a 5 mmol/L concentration of fructose-1,6-diphosphate was infused during the first 30 minutes of reperfusion. We measured contractile function, glucose uptake, lactate production, and adenosine triphosphate and phosphocreatine levels by phosphorus 31-nuclear magnetic resonance spectroscopy. RESULTS: In the nonischemic hearts, fructose-1,6-diphosphate resulted in a dose-dependent increase in glucose uptake, adenosine triphosphate, phosphocreatine, and inorganic phosphate levels. During the infusion of fructose-1,6-diphosphate, developed pressure and extracellular calcium levels decreased. Developed pressure was restored to near control values by normalizing extracellular calcium. In the ischemia/reperfusion model, after 60 minutes of reperfusion the hearts that received fructose-1,6-diphosphate during the first 30 minutes of reperfusion had higher developed pressures (83 +/- 2 vs 70 +/- 4 mm Hg, p < 0.05), lower diastolic pressures (7 +/- 1 vs 12 +/- 2 mm Hg, p < 0.05), and higher phosphocreatine levels than control untreated hearts. Glucose uptake was also greater after ischemia in the hearts treated with fructose-1,6-diphosphate. CONCLUSIONS: We conclude that fructose-1,6-diphosphate, when given during early reperfusion, significantly improves recovery of both diastolic and systolic function in association with increased glucose uptake and higher phosphocreatine levels during reperfusion.  相似文献   

8.
The region of the genome encoding the glucose-6-phosphate dehydrogenase gene zwf was analysed in a unicellular cyanobacterium, Synechococcus sp. PCC 7942, and a filamentous, heterocystous cyanobacterium, Anabaena sp. PCC 7120. Comparison of cyanobacterial zwf sequences revealed the presence of two absolutely conserved cysteine residues which may be implicated in the light/dark control of enzyme activity. The presence in both strains of a gene fbp, encoding fructose-1,6-bisphosphatase, upstream from zwf strongly suggests that the oxidative pentose phosphate pathway in these organisms may function to completely oxidize glucose 6-phosphate to CO2. The amino acid sequence of fructose-1,6-bisphosphatase does not support the idea of its light activation by a thiol/disulfide exchange mechanism. In the case of Anabaena sp. PCC 7120, the tal gene, encoding transaldolase, lies between zwf and fbp.  相似文献   

9.
Glutamine:fructose-6-phosphate amidotransferase (glucosamine-6-phosphate synthase) catalyzes the first step of the hexosamine pathway required for the biosynthesis of cell wall precursors. The Candida albicans GFA1 gene was cloned by complementing a gfa1 mutation of Saccharomyces cerevisiae (previously known as gcn1-1; W. L. Whelan and C. E. Ballou, J. Bacteriol. 124:1545-1557, 1975). GFA1 encodes a predicted protein of 713 amino acids and is homologous to the corresponding gene from S. cerevisiae (72% identity at the nucleotide sequence level) as well as to the genes encoding glucosamine-6-phosphate synthases in bacteria and vertebrates. In cell extracts, the C. albicans enzyme was 4-fold more sensitive than the S. cerevisiae enzyme to UDP-N-acetylglucosamine (an inhibitor of the mammalian enzyme) and 2.5-fold more sensitive to N3-(4-methoxyfumaroyl)-L-2,3-diaminopropanoic acid (a glutamine analog and specific inhibitor of glucosamine-6-phosphate synthase). Cell extracts from the S. cerevisiae gfa1 strain transformed with the C. albicans GFA1 gene exhibited sensitivities to glucosamine-6-phosphate synthase inhibitors that were similar to those shown by the C. albicans enzyme. Southern hybridization indicated that a single GFA1 locus exists in the C. albicans genome. Quantitative Northern (RNA) analysis showed that the expression of GFA1 in C. albicans is regulated during growth: maximum mRNA levels were detected during early log phase. GFA1 mRNA levels increased following induction of the yeast-to-hyphal-form transition, but this was a response to fresh medium rather than to the morphological change.  相似文献   

10.
A Schistosoma mansoni cercarial cDNA expression library, constructed in lambda gt11, was screened using the IgG fraction of sera taken from rabbits vaccinated with irradiated cercariae. A positive cDNA clone (1,431 base pairs) was selected and characterized. The amino acid sequence predicted from the cDNA sequence identified a polypeptide of 363 amino acids that showed significant homology to different family members of the enzyme fructose-1,6-bisphosphate aldolase (EC 1.4.2.13). The identity was 66% and 65% with human C and A isoenzymes, respectively. Active sites and substrate-binding determinant analysis suggest that the isolated enzyme in terms of function resembles type A aldolase. The recombinant protein expressed in the vector pGEX-2T was found to be active enzymatically. Antibodies raised against the purified recombinant protein recognized a 40-kDa band in extracts from cercariae, schistosomula (5 and 25 days), adult worms, and eggs. Using immunocytochemistry, aldolase localized to the tegumental region of the adult worms.  相似文献   

11.
The unidirectional steady state reaction rates of several enzymes and metabolic fluxes of distinct processes were measured simultaneously in hypoxic maize root tips using two-dimensional phosphorus NMR exchange spectroscopy. A single spectrum monitors ATP synthesis and hydrolysis as well as the activities of four enzymes involved in key pathways of central metabolism: UDP-glucose pyrophosphorylase, phosphoglucomutase, hexose-phosphate isomerase, and enolase. The corresponding unidirectional reaction rates and net metabolic fluxes were calculated from spectral intensities. This method provides a unique picture, at enzyme resolution, of how metabolism reacts in a concerted fashion to changes in external parameters such as temperature and oxygen concentration. By increasing hypoxia via an increase in temperature, we measured the expected increase in glycolysis through enolase activity while total ATP synthesis settled. At the same time, we observed a net flux through phosphoglucomutase and UDP-glucose pyrophosphorylase toward carbohydrate synthesis. This result is discussed in relation to the current hypothesis on the turnover of cell walls and sucrose. This reaction also produces a net flux of pyrophosphate, which is needed by pyrophosphate:fructose-6-phosphate 1-phosphotransferase to work as a glycolytic enzyme.  相似文献   

12.
Sugar-3-phosphates are related to aspects of diabetes which depend on protein glycosylation events. Sorbitol-3-phosphate and fructose-3-phosphate occur in normal and diabetic individuals, and glucose-3-phosphate is a potential intermediate in their biosynthesis. Almost nothing is known about enzyme pathways for their metabolic turnover. We have found that part of the phosphohydrolytic activity on glucose-3-phosphate in rat liver supernatants corresponds to a specific, Mg(2+)-dependent, glucose-3-phosphatase much less or not active on other phosphate esters, including glucose-1-phosphate, glucose-6-phosphate, fructose-1-phosphate, fructose-6-phosphate and p-nitrophenyl-phosphate. This finding opens a route to a better understanding of the metabolism and role of sugar-3-phosphates.  相似文献   

13.
The administration of the antilipolytic agents sodium nicotinate (1 mmole/kg i.p.) or sodium 5-methylpyrazole-3-carboxylate (0.5 or 1.0 mmole/kg i.p.) to alloxan-diabetic rats produced a significant reduction in the plasma concentration of free fatty acids and a slight reduction in blood glucose concentration. The concentrations in the freeze-clamped heart of citrate , acetyl CoA, Glucose-6-phosphate and fructose-6-phosphate were increased in untreated alloxan-diabetic rats relative to normoglycaemic controls. Treatment of alloxan-diabetic rats with the antilipolytic agents or insulin (60 U/kg i.p.) lowered these increased concentrations of metabolites in the heart. Treatment of the diabetic rats with the antilipolytic agents also produced an increase in the activity of pyruvate dehydrogenase in heart, but only treatment with 5-methylpyrazole-3-carboxylate had a significant effect on the activity of the enzyme in freeze-clamped soleus muscle.  相似文献   

14.
The nadC gene from Escherichia coli was isolated and sequenced. The gene was then cloned into an expression vector and, following transformation, the resulting bacteria were able to produce quinolinate phosphoribosyl transferase as about 2% of the soluble protein. The enzyme was purified in five steps leading to a homogeneous preparation. The enzyme reaction shows an ordered binding mechanism where the magnesium ion complex of 5-phosphoribosyl-1-pyrophosphate binds first followed by quinolinic acid. The products are pyrophosphate CO2, and nicotinate mononucleotide. Product inhibition studies show that nicotinate mononucleotide is a competitive inhibitor with respect to 5-phosphoribosyl-1-pyrophosphate while pyrophosphate is noncompetitive with respect to both 5-phosphoribosyl-1-pyrophosphate and quinolinic acid. Phthalic acid and fructose-1,6-bisphosphate were used as dead-end inhibitors. Phthalate was competitive with respect to quinolinic acid but uncompetitive with respect to 5-phosphoribosyl-1-pyrophosphate. Fructose-1,6-bisphosphate was a competitive inhibitor with respect to 5-phosphoribosyl-1-pyrophosphate and noncompetitive with respect to quinolinic acid. The Km values for the substrates are 15.6 microM for 5-phosphoribosyl-1-pyrophosphate and 6.4 microM for quinolinic acid.  相似文献   

15.
Properties of mung bean pyruvate kinase were studied and the active site groups were derived. Metabolites like AMP, glucose, glucose-6-phosphate, fructose-6-phosphate, fructose-1, 6-bisphosphate, 3-phospho-glycerate, isocitrate, malate and alpha-ketoglutarate had practically no effect on pyruvate kinase activity. Alanine, serine, glutamine, methionine and GMP had a weak activating effect on the enzyme. Some metabolites such as ATP, GTP, and UMP were found to be weakly inhibitory. Moderate to strong inhibition was observed with citrate, succinate, glutamate and oxalate. Inhibition brought about by ATP and citrate when present together showed synergistic effect. Inhibition by citrate was non-competitive with respect to both PEP and ADP suggesting the presence of a regulatory site. Mung bean pyruvate kinase showed half optimal activity at pH 6.6 and 8.9 at saturating concentrations of PEP, ADP and Mg2+. Small concentrations of the SH specific reagents, namely iodoacetamide (0.1 and 0.2 mM), N-ethylmaleimide(0.05-0.1 mM) and p-chloromercuribenzoate (0.1 mM) inactivated the enzyme; single exponential loss of activity was observed in each case. Photooxidation of the enzyme in the presence of methylene blue (100 and 200 micrograms/ml) and rose bengal (5 and 10 micrograms/ml) also led to a single exponential activity decay. When the enzyme was treated with diethyl pyrocarbonate (DEP), a time dependent exponential decay in its activity was observed with a parallel increase in absorbance at 240 nm. PEP protected the enzyme against inactivation by DEP. Reagents specific for tyrosine (iodine and tetranitromethane) and tryptophan residues (N-bromosuccinimide) residues had no effect. These observations confirm that SH and imidazole groups are vital for the activity of the enzyme.  相似文献   

16.
Phosphofructokinase purified from mantle tissue of the sea mussel Mytilus galloprovincialis, was phosphorylated "in vitro" by the catalytic subunit of cyclic AMP-dependent protein kinase. The incorporation of phosphate gave rise to an activation of the enzyme by increasing its affinity for fructose-6-phosphate, by decreasing its sensitivity to the inhibition by ATP and by enhancing the effect of allosteric activators (5'-AMP and fructose-2,6-bisphosphate). In addition, the effects of phosphorylation on the catalytic activity are pH-dependent.  相似文献   

17.
The effects of M16209 (1-(3-bromobenzofuran-2-ylsulfonyl)hydantoin), an antidiabetic agent and aldose reductase inhibitor, on glycolysis were studied in rat and human erythrocytes in vitro. M16209 increased lactate production from glucose when incubated with rat and human erythrocytes, and also increased glucose consumption in rat erythrocytes. The rates of production of lactate in rat erythrocytes treated with M16209 at 10, 25 and 50 microM were 113, 118 and 123%, respectively, of those in vehicle treated cells. Sorbinil (aldose reductase inhibitor), tolbutamide (sulfonylurea), and buformine (biguanide) did not increase lactate production in rat erythrocytes when tested at 50 microM. On the other hand, M16209 did not affect lactate production from D-glyceraldehyde in rat erythrocytes. At 100 microM the agent decreased both glucose-6-phosphate and fructose-6-phosphate in rat erythrocytes, and increased fructose-1,6-bisphosphate; at 10 microM it also increased 6-phosphofructokinase activity in rat hemolysates. These findings suggest that M16209 accelerates glycolysis in erythrocytes via activation of 6-phosphofructokinase.  相似文献   

18.
When the kinetics of interconversion of deoxy[14C]glucose ([14C]DG) and [14C]DG-6-phosphate ([14C]DG-6-P) in brain in vivo are estimated by direct chemical measurement of precursor and products in acid extracts of brain, the predicted rate of product formation exceeds the experimentally measured rate. This discrepancy is due, in part, to the fact that acid extraction regenerates [14C]DG from unidentified labeled metabolites in vitro. In the present study, we have attempted to identify the 14C-labeled compounds in ethanol extracts of brains of rats given [14C]DG. Six 14C-labeled metabolites, in addition to [14C]DG-6-P, were detected and separated. The major acid-labile derivatives, DG-1-phosphate (DG-1-P) and DG-1,6-bisphosphate (DG-1,6-P2), comprised approximately 5 and approximately 10-15%, respectively, of the total 14C in the brain 45 min after a pulse or square-wave infusion of [14C]DG, and their levels were influenced by tissue glucose concentration. Both of these acid-labile compounds could be synthesized from DG-6-P by phosphoglucomutase in vitro. DG-6-P, DG-1-P, DG-1,6-P2, and ethanol-insoluble compounds were rapidly labeled after a pulse of [14C]DG, whereas there was a 10-30-min lag before there was significant labeling of minor labeled derivatives. During the time when there was net loss of [14C]DG-6-P from the brain (i.e., between 60 and 180 min after the pulse), there was also further metabolism of [14C]DG-6-P into other ethanol-soluble and ethanol-insoluble 14C-labeled compounds. These results demonstrate that DG is more extensively metabolized in rat brain than commonly recognized and that hydrolysis of [14C]DG-1-P can explain the overestimation of the [14C]DG content and underestimation of the metabolite pools of acid extracts of brain. Further metabolism of DG does not interfere with the autoradiographic DG method.  相似文献   

19.
Two sisters with fructose-1,6-diphosphatase deficiency are reported. They presented with ketonuria, elevated plasma transaminase activity and severe metabolic acidosis during hypoglycaemic crises, which resembled Reye syndrome. Intravenous fructose tolerance tests provoked severe hypoglycaemia and metabolic acidosis. Fructose-1,6-diphosphatase activities in both peripheral leukocytes and cultured lymphocytes were below the limit of detection. Urinary organic acid analysis during crises revealed markedly increased excretion of lactate, ketone bodies, glycerol and glycerol-3-phosphate. We newly identified other glycolytic intermediates, glyceraldehyde, 3-phosphoglycerate and fructose-1,6-diphosphate, in the urine during hypoglycaemic attacks or after fructose tolerance tests. Identification of such compounds may be useful in the early diagnosis of this disease.  相似文献   

20.
We have previously demonstrated that in isolated hepatocytes from fasted rats, AICAriboside (5-amino 4-imidazolecarboxamide riboside), after its conversion into AICAribotide (AICAR or ZMP), exerts a dose-dependent inhibition on fructose-1,6-bisphosphatase and hence on gluconeogenesis. To assess the effect of AICAriboside in vivo, we measured plasma glucose and liver metabolites after intraperitoneal administration of AICAriboside in mice. In fasted animals, in which gluconeogenesis is activated, AICAriboside (250 mg/kg body weight) induced a 50% decrease of plasma glucose within 15 min, which lasted about 3 h. In fed mice, glucose decreased by 8% at 30 min, and normalized at 1 h. Under both conditions, ZMP accumulated to approximately 2 mumol/g of liver at 1 h. It decreased progressively thereafter, although much more slowly in the fasted state. Inhibition of fructose-1,6-bisphosphatase was evidenced by time-wise linear accumulations of fructose-1,6-bisphosphate, from 0.006 to 3.9 mumol/g of liver at 3 h in fasted mice, and from 0.010 to 0.114 mumol/g of liver at 1 h in fed animals. AICAriboside did not significantly influence plasma insulin or glucose utilization by muscle. We conclude that in vivo as in isolated hepatocytes, AICAriboside, owing to its conversion into ZMP, inhibits fructose-1,6-bisphosphatase and consequently gluconeogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号