首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
针对都龙矿区以锌锡为主含低品位黄铜矿的多金属硫化矿,由于原矿含铜品位较低铜锌矿物嵌布粒度不均且互含关系密切,加之原矿中含滑石、云母等易浮脉石矿物的影响,采用优先选铜的原则流程及常规黄药类组合捕收剂获得的铜精矿指标不尽理想,铜精矿含铜品位16%左右、含锌品位高达9%以上,铜精矿回收率仅50%左右,难以达到铜矿物与锌矿物及脉石矿物间的高效分选回收的目的。通过对选铜药剂制度的优化研究,获得了铜精矿含铜品位21.54%、含锌品位6.41%,铜精矿回收率53.85%的选铜指标,与原药剂制度相比,铜精矿中的锌矿物及易浮脉石矿物的含量大幅度降低,选铜指标得到明显提升。  相似文献   

2.
某复杂铜锌硫化矿高效浮选分离新工艺研究   总被引:2,自引:1,他引:1  
苏建芳  黄红军  孙伟 《矿冶工程》2012,(3):40-43,47
在铁闪锌矿和黄铜矿两种单矿物浮选试验的基础上,针对某复杂铜锌硫化矿石的原矿性质,用石灰抑制含铁矿物,硫酸锌抑制含锌矿物,丁黄药和2-巯基苯骈噻唑的混合药剂捕收含铜矿物,可以实现铜锌矿物的高效浮选分离。在开路试验基础上进行了实验室小型闭路试验,可获得铜精矿品位22.09%、铜回收率92.11%,锌精矿品位49.13%、锌回收率73.33%的选别指标。  相似文献   

3.
虎建宁  韩彬 《矿冶》2018,27(2):43-46
某选矿厂铜粗精矿中夹带大量的锌硫矿物及滑石、云母等易浮脉石矿物,在铜精选段采用石灰及硫酸锌虽然能抑制锌硫矿物,但对以滑石为主的易浮脉石矿物无抑制作用,导致精选后的铜精矿产品中脉石杂质含量大、铜品位明显偏低。针对该现状,在铜精选段进行了降低铜精矿中易浮脉石矿物的提铜除杂试验研究,在铜精选段采用CMC-Na作为易浮脉石矿物的抑制剂后,获得了铜精矿含铜品位22.34%,精选段作业回收率84.71%的选铜指标,达到了提铜降杂的目的。  相似文献   

4.
新疆某难选铜锌矿含铜0.98%,含锌4.17%。为更好的开发利用该矿产资源,进行了详细的选矿工艺研究。针对该矿石嵌布粒度细、矿物组成复杂及含有较多易浮脉石的特点,选择针对性的铜锌捕收剂和抑制剂,采用铜(锌)优先浮选—锌(硫)优先的工艺流程,获得了较好的选矿指标,铜精矿含铜23.12%,铜回收率86.26%,锌精矿含锌44.43%,锌回收率81.25%。  相似文献   

5.
多金属铜锌矿铜精矿降锌工业试验应用研究   总被引:1,自引:1,他引:0  
云南某多金属低品位铜锌矿采用部分混合浮选工艺,在生产中存在铜锌浮选分离效率低、铜精矿含锌高的突出问题。原矿工艺矿物学研究分析知原矿中铜、锌矿物单体解离度较高,原现场捕收剂对铜矿物选择性较差,导致铜精矿中锌含量高。实验室试验采用新型铜捕收剂OL-IIA替换现场原铜组合捕收剂,取得显著效果后推广到工业试验。工业试验结果表明,新药剂制度下铜精矿品位16.48%、铜的回收率45.81%,精矿含锌6.95%。原药剂制度下铜精矿品位15.80%、铜的回收率42.61%,精矿含锌11.04%。相比而言,新药剂条件下铜回收率提高了3.20%,铜精矿含锌相比原药剂降低了4.09%、银含量增加了32.33%。流程考查及产品分析可知新捕收剂OL-IIA可扩大铜矿物和锌矿物的润湿性差异,提高了铜精矿品位,有效降低了铜精矿中锌的含量,最终实现了铜锌的精确分选、高效回收。  相似文献   

6.
针对小寺沟蛇纹石-滑石型低品位微细粒级铜矿脉石含量高、黄铜矿与黄铁矿紧密共生、嵌布粒度极细等问题,通过自主研发易浮脉石抑制剂CD-2,配合使用Z-200+CF-1组合药剂,确定原矿-磨矿-两段粗选-粗精矿再磨-两段精粗选-抛尾的工艺流程,当原矿含铜0.57%时,获得铜精矿1含铜23.65%、回收率为68.66%,铜精矿2含铜3.06%、铜回收率5.10%,总铜精矿含铜16.13%、铜总回收率为73.76%的良好选别指标。  相似文献   

7.
复杂难选钼铜硫多金属矿选矿技术研究   总被引:4,自引:4,他引:0  
原矿中钼品位为0.081%,铜含量很低为0.04%,而硫含量较高为2.70%,钼铜硫矿物之间以及它们与脉石矿物之间嵌布粒度微细,并且铜硫之间及与其他硫化矿物之间呈微细粒互相包裹,脉石矿物异常好浮。为了同时回收该矿石中的目的矿物,研究采用了合理有效的选矿流程方案及药剂制度,使难选铜、钼、硫矿物得到有效的回收,获得钼精矿品位46.10%、回收率83.43%,铜精矿品位11.92%、回收率74.40%,硫精矿品位45.35%、回收率90.51%的良好选矿指标。  相似文献   

8.
国外极细酸浸铜渣浮选试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
国外某酸浸渣中铜的赋存状态较复杂,主要为次生铜,并含有部分硫化铜及氧化铜矿物。原矿中部分铜矿物嵌布粒度极细。原矿中铜氧化率高,含有大量易浮脉石,造成其在浮选过程中被夹带进入铜精矿,致使铜精矿品位不高。根据矿石性质特点,研究采用两粗三精两扫的工艺流程,在磨矿细度为77.3%-23μm,矿浆浓度在25%~33%条件下,使用瓜尔胶作为易浮脉石的抑制剂,碳酸钠作为pH值调整剂和矿泥分散剂,BP和B-130作为组合捕收剂,BP浮选硫化铜,B-130浮选氧化铜,柴油作为起泡剂的药剂制度,全流程获得铜精矿含铜18.62%,回收率90.1%的选矿指标。  相似文献   

9.
刘耀武  米寰鹏 《中国矿业》2021,30(S2):281-285
某铅锌矿原矿Pb品位6.67%,Zn品位13.26%,矿石中含有一定量的易浮脉石——碳质物,同时含硫较高,原矿S品位32.51%,属复杂难选铅锌矿石。矿石中方铅矿嵌布粒度不均匀,且与闪锌矿、黄铁矿共生关系复杂,严重影响选矿过程中铅锌分离及铅硫分离。根据原矿性质,采用“易浮脉石预先浮选-铅锌依次优先”浮选工艺流程进行试验研究,实验室闭路试验获得铅精矿铅品位53.22%,铅回收率85.07%,含锌8.73%;锌精矿锌品位56.19%,锌回收率83.68%,含铅1.23%,实现了铅、锌矿物和黄铁矿的高效分离。  相似文献   

10.
摘要:针对青海某铜锌硫化矿石开展试验研究,矿石性质研究表明,该矿铜矿物嵌布粗细不均匀,大约有15%的铜矿物呈微细粒(粒度小于10μm)包裹于脉石矿物中,难以得到有效回收,同时原矿含锌较低,含量在锌矿边界品位(0.5~1%),可考虑伴生回收。针对该矿矿石性质,采用优先浮铜工艺,可有效实现铜、锌分离,获得了铜精矿品位18.66%、铜回收率83.90%、铜精矿含金3.06g/t,锌精矿品位41.69%、锌回收率29.49%的较好选矿指标。   相似文献   

11.
鞠志强  李艳军 《金属矿山》2019,48(2):135-140
采用X-射线分选机对大井子铜锌矿石进行不同粒级的X射线预选试验,结果表明:当阈值选取0.09时,30~200 mm粒级采用预选工艺后可获得铜、锌品位分别为0.90%和0.73%,铜、锌回收率分别为99.46%和98.80%的预选精矿,抛尾率为18.09%。30~200 mm粒级与筛分后-30 mm合并为精矿,较原矿铜、锌品位分别提高了0.16和0.13个百分点。对预选尾矿分析表明:预选尾矿铜品位为0.028%,锌品位为0.036%,铜、锌品位非常低;SiO2含量为63.13%,Al2O3含量为14.48%,TFe含量为7.32%,少量的CaO、MgO和K,说明尾矿主要成分为脉石矿物。对预选后精矿进行SEM和EDS检测表明:预选精矿主要以石英、绿泥石等脉石矿物为主,矿物组成粒度极不均,矿物之间的嵌布关系较复杂。对大井子铜锌矿石进行X-射线分选机预选后,可以提高入选矿石的品位,减少入选的废石量,提高选厂的综合效益。  相似文献   

12.
云南东川某铜锌硫化矿石Cu品位为0.64%、Zn品位为6.21%,主要脉石矿物有石英、绢云母、方解石等,且矿石中的矿物多数都构成连生体,给铜锌分离造成困难。对该矿石采用抑锌浮铜的优先浮选工艺流程。在磨矿细度为-0.074 mm占80%条件下,用石灰调节pH,铜粗选用硫酸锌和焦亚硫酸钠组合抑制闪锌矿,Z-200为捕收剂;锌粗选以硫酸铜为活化剂,异丁基黄药为捕收剂;铜和锌均采用“一次粗选一次扫选两次精选”的工艺流程,其中,铜粗精矿需再磨至细度为-0.038 mm占90%,铜第一次精选尾矿需进行扫选。最终,经闭路流程试验获得Cu品位27.87%、Cu回收率75.17%的铜精矿和Zn品位49.23%、Zn回收率94.48%的锌精矿,铜精矿含锌5.41%,锌精矿含铜1.03%,铜锌互含较低,实现了铜锌分离。   相似文献   

13.
加锴锴 《金属矿山》2020,50(5):197-204
非洲某高硫铜锌硫化矿中Cu和Zn的品位分别为1.30%、2.97%。由于原矿中铜矿物嵌布粒度细,与锌矿物紧密共生,矿石中次生铜矿物易氧化释放出铜离子活化闪锌矿,导致精矿互含率高,生产指标较差。 针对该矿石特点,进行了系统的工艺优化试验。结果表明:①矿石中主要铜矿物为黄铜矿,嵌布粒度较细,主要集中在10~35 μm;锌矿物为铁闪锌矿,粒度集中在10~75 μm;有害元素As主要以毒砂形式存在,少量 存在于硫砷铜矿中;其它硫化物主要为黄铁矿;脉石矿物主要包括方解石、白云石、菱铁矿、石英等。②在磨矿细度为P80=75 μm的条件下,经“粗精矿再磨+1粗3精1扫”选铜和选锌流程,最终可获得Cu品位26.03% 、含Zn1.72%、Cu回收率84.02%、Zn损失率3.29%的铜精矿和Zn品位44.16%、含Cu2.84%、Zn回收率90.63%、Cu损失率9.80%的锌精矿,较好地实现了铜锌资源的分离与回收。③试验采用焦亚硫酸钠作为锌的高效抑制剂 ,降低了难免离子对闪锌矿的活化;对于部分共生关系致密,嵌布粒度极细的铜锌矿物,通过超细磨技术进一步促进了铜锌单体解离,最终实现了铜锌高效分离。  相似文献   

14.
河北某锌铁矿石可回收利用的金属元素主要为Zn、Fe,并伴生可综合回收的Ag、Cd,但矿石性质复杂,主要有用矿物闪锌矿和磁铁矿嵌布粒度细,与脉石矿物解离困难,属较难选锌铁矿石。为了给该矿石的开发利用提供依据,对其进行了选矿工艺研究。结果表明:在-0.074 mm占85%的磨矿细度和-0.038 mm占70%的粗精矿再磨细度下,以石灰为调整剂、硫酸铜为活化剂、丁黄药为捕收剂、原矿经1粗2扫4精闭路浮选,可获得锌品位为49.15%、锌回收率为91.01%的锌精矿,Ag、Cd富集于锌精矿中,品位分别为162 g/t、0.25%,回收率分别为58.12%、92.58%;浮选尾矿经弱磁粗选—粗精矿再磨至-0.043 mm占82%后2次弱磁精选,可得到铁品位为63.18%、铁回收率为56.09%的铁精矿。  相似文献   

15.
对国外某矿床铜矿石进行工艺矿物学分析,研究发现矿石中有价元素为铜,含量2.17%。铜主要以孔雀石和辉铜矿的形式存在,这些矿物嵌布关系复杂,大部分以它形粒状、不规则状嵌布于脉石矿物中,部分孔雀石和辉铜矿粒度细小,且与褐铁矿三者之间嵌布关系较紧密。脉石矿物绝大部分为白云石,含量高达83.97%,矿石类型为沉积岩型氧硫混合铜矿。针对这一复杂难选的铜矿石,本文采用“先硫后氧”的工艺流程,使用硫化铜粗选精矿再磨工艺,并使用NaHS和(NH4)2SO4作为氧化铜矿的活化剂,(NaPO3)6作为脉石矿物的抑制剂,最终获得了高品位硫化铜精矿(Cu 62.37%)和低钙镁含量(CaO+MgO 12.50%)的氧化铜精矿(Cu 30.08%),铜综合回收率82.47%,实现了对这类矿石的高效回收。  相似文献   

16.
吉林某低品位铜镍硫化矿石铜品位为0.27%、镍品位为0.48%。矿石中含镍矿物主要为紫硫镍铁矿、镍黄铁矿,含铜矿物主要为黄铜矿、铜蓝、斑铜矿。试验研究表明,采用单一浮选流程不能获得较好的选别指标;由于矿石中紫硫镍铁矿、镍黄铁矿、黄铜矿等有用金属硫化物与磁铁矿嵌布关系密切,因此采用弱磁选对含镍矿物进行富集,获得目的矿物含量高、易泥化脉石含量低的磁性产品和目的矿物含量低、易泥化脉石含量高的非磁性产品,再分别进行磨浮流程处理。结果表明:原矿磨细至-0.074 mm占30%时进行弱磁选,磁性产品和非磁性产品分别再磨至-0.074 mm占85%后采用1粗2精2扫闭路浮选流程处理,获得了铜品位为4.53%、镍品位为6.65%、铜回收率为54.63%、镍回收率为44.90%的铜镍混合精矿1和铜品位为1.88%、镍品位为3.37%、铜回收率为23.98%、镍回收率为24.13%的铜镍混合精矿2,尾矿铜、镍品位分别降至0.06%和0.16%,实现了对该铜镍硫化矿石的有效分选。  相似文献   

17.
云南某铜镍硫化矿主要金属矿物有黄铜矿、辉铜矿、镍黄铁矿、含镍磁黄铁矿,脉石矿物主要有蛇纹石、石英。原矿含铜0.88%,含镍0.57%,该矿石属于典型的低品位铜镍硫化矿。为更好地对铜镍矿物充分回收利用,对试样进行试验研究。结果表明,试样在磨矿细度为-74μm占70%,Na_2CO_3用量1 000 g/t,CuSO_4用量200 g/t,六偏磷酸钠用量300 g/t,捕收剂用量150 g/t、松醇油用量40 g/t的条件下,采用两次粗选、两次精选、二次扫选、中矿循序返回流程处理。最终获得回收率为84.39%、品位为4.87%的铜精矿,回收率为78.83%、品位为3.05 g/t的镍精矿。  相似文献   

18.
摘要:丽江某难处理氧化铜矿尾矿品位为0.58%,原矿中铜矿物种类多,矿石可浮性差异大,氧化率高,钙镁等碱性脉石含量较高,矿泥含量较高,属于泥质铜矿。大量矿泥的存在不仅消耗大量药剂,增加了操作控制难度,导致铜精矿品位和回收率低。因此,在原矿性质研究基础之上,试验采用两次粗选、两次扫选、一次精选的工艺流程,通过添加高效活化剂HS,有效地活化了目的矿物的上浮,最终获得了铜品位15.36%,铜回收率为83.80%的铜精矿,试验指标良好。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号