首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
从资源再利用的角度分析了含铜污泥的处置及综合回收利用的问题,详细介绍了富氧侧吹浸没燃烧熔池熔炼工艺的流程及优势。使用该工艺处理污泥,铜的回收率达到95%以上,渣含铜控制在0.7%以下,熔炼烟尘可作为次氧化锌产品外售,废气可回收余热降低能耗,冶炼渣水碎后变为无害渣可作为建筑辅材外售,实现了污泥的综合利用。  相似文献   

2.
铜冶炼渣是一种重要的可回收铜资源。本文详细分析了白银公司1 370 kt/a铜冶炼渣资源处理工程采取铜冶炼炉渣经一定时间缓冷后送选矿,产出铜精矿再返回铜熔炼配料回收铜的技术处理方案。实践证明,渣选矿工艺的铜金属回收率较高,是铜冶炼渣资源处理回收铜的有效途径。  相似文献   

3.
铜冶炼厂广泛采用渣缓冷工艺回收炉渣中的铜,该工艺可以提高铜的回收率,增加企业的经济效益.文章介绍了铜熔炼渣的缓冷工艺和主要设施,讨论了渣缓冷工艺存在的主要问题并提出了解决措施,为铜熔炼渣缓冷工艺的生产管理提供参考.  相似文献   

4.
采用化学分析、X射线衍射、扫描电镜微观分析三种方法分析铜熔炼渣的基础物化性质;利用热力学计算软件对铜熔炼渣中所需回收金属化合物进行理论计算,使用100kW感应炉及碳化硅石墨坩埚进行10kg级铜熔炼渣综合回收有价金属试验。结果表明,铜熔炼渣中有91.06%的Cu以硫化物状态存在,在无烟煤配比10%、黄铁矿配比10%条件下,保温120min,获得尾渣中Cu、Pb、Zn含量分别为0.28%、0.013%、0.0062%;为搭配处理炼铜烟尘和更经济的综合回收,无烟煤配比3%、黄铁矿配比3%,搭配处理6%炼铜烟尘,保温70 min,实现尾渣中Cu、Pb、Zn含量分别为0.39%、0.049%、0.028%。  相似文献   

5.
金通公司采用炉渣缓冷、浮选回收铜,再磁选回收选铁工艺。经过生产组织及关键工艺控制指标优化,并加以技术攻关,在保障炉渣有效回收选铜各项指标后,产出了 50% 以上的铁精矿,熔炼渣与吹炼渣混合磁选铁精矿较原矿产率达到 35%,大幅度实现了尾矿减量化,更为公司增创了大额效益。  相似文献   

6.
正方圆公司承担的国家国际科技合作专项——"降低炼铜弃渣含铜技术与装置联合研发"通过验收。该项目于2013年开始实施,通过与澳大利亚昆士兰大学合作,实现了铜熔炼渣的综合回收,熔炼渣含铜≤2.5%、弃渣含铜≤0.3%、铜熔炼直收率≥98%,该技术突破了国内外铜熔炼渣弃渣含铜  相似文献   

7.
结合中原冶炼厂大型富氧底吹炉生产运行数据,研究分析渣含铜的主要影响因素,并制定相应调控措施。通过工艺参数优化,底吹炉熔炼渣含铜从6%以上降至3.32%,解决了底吹炉在高处理能力情况下的渣含铜偏高问题,为类似企业提供技术借鉴。  相似文献   

8.
结合钴资源及钴市场近况,指出了从富钴铜冶炼渣中提钴的必要性及急切性。在传统的铜冶炼渣处理工艺已难以满足综合回收铜、钴等有价金属的情况下,近年来对从富钴铜冶炼渣中综合提取钴工艺方法的研究集中在优化还原硫化熔炼工艺和铜钴冰铜中铜、钴分离工艺组合上。研究表明:通过优化还原硫化熔炼的生产条件,可以得到较好的铜、钴回收率;而采用湿法工艺综合回收铜、钴存在工艺流程长,对设备要求苛刻等不足;采用磁选工艺分离铜、钴,因其能无缝衔接现有铜火法冶炼工艺且投资生产成本低而备受关注,后续有待进一步研究,找出最经济、环保的工艺参数。  相似文献   

9.
本文研究了铜渣浮选尾料回收铜铁过程中熔炼炉渣含铁和铁合金,考察了焦炭加入量、氧化钙加入量、硼酸钠加入量、熔炼温度对熔炼炉渣中渣含铁的影响。研究表明最佳工艺条件为焦炭加入量9%、氧化钙加入量22%、硼酸钠加入量2%、熔炼温度1425℃。此时,熔炼炉渣中含铁为0.86%,产出的铁合金含铁达到96.27%,含铜达到0.99%,实现了铜渣浮选尾料中铜和铁的有效回收。  相似文献   

10.
试验采用造锍熔炼工艺流程综合回收处理黄钠铁矾渣,在温度1 250℃,时间2 h,还原剂碳与炉料质量比10%,黄铁矿与铁矾渣量比22%,石英石与铁矾渣量比20%,石灰石与铁矾渣量比0.5%的条件下,铜、镍等有价金属能较好的富集在镍锍中。通过造锍熔炼试验表明:采用造锍熔炼工艺综合回收处理黄钠铁矾渣,镍直收率可达到90%以上,铜直收率可达到91%以上。  相似文献   

11.
以铜阳极泥熔炼渣为原料,采用还原熔炼工艺回收渣中有价金属。探究渣型、Na2CO3用量、焦粉用量和保温时间对金属回收率的影响。结果表明,在冶炼温度1 150℃,渣相m(Fe)/m(SiO2)=0.72,m(CaO)/m(SiO2)=0.65,Na2CO3用量5%,焦粉用量2%,保温时间60 min的最优条件下,渣中Au、Ag、Pb、Bi的回收率分为97.15%、97.78%、91.27%和99.61%。实现了铜阳极泥熔炼渣中有价金属的综合回收。  相似文献   

12.
采用工艺矿物学系统分析方法对富氧底吹熔炼渣中铜的赋存状态及导致渣含铜高的相关因素进行研究,并采用BPMA对损失的铜物相进行工艺矿物学参数自动测量及统计。结果表明,熔炼渣中铜主要以沉降不充分所致的冰铜机械夹杂形式赋存于渣中,其次为生料反应不完全所致,冰铜夹杂主要是放渣过程中离渣口最近的喷枪的二次搅动引起,生料夹杂集中在放渣后期。从工艺矿物学角度提出,通过调整底吹熔炼炉喷枪角度及放渣过程中的进料设置可有效降低铜在渣中的损失。损失于渣中的铜物相嵌布粒度以大于0.10mm的粗粒及小于0.01mm的微粒为主,分布极不均匀。通过统计结果进行理论计算,当磨矿细度为-0.074mm占70%~85%,浮选后渣含铜的理论下限为0.45%~0.30%,在现有技术经济条件下将永久损失。  相似文献   

13.
本文详细讨论了确保三菱连续铜熔炼和吹炼工艺产出的弃渣含铜较低的相关因素,重点讨论高效熔炼与渣贫化阶段,尤其是将渣中铜损失降至最低的那些重要的设计特点与生产实践。生产冰铜时,通常认为渣含铜直接与冰铜的品位有关。大多数其他冶炼工艺仅生产含铜30%~63%的冰铜,其中一些工艺要求进一步处理弃渣,以达到满意的铜回收率。相反,三菱工艺通常将冰铜品位控制在67%~69%范围,同时还能将弃渣中铜损失保持在0.6%左右。  相似文献   

14.
综述我国铜冶炼工业节能减排现状与发展趋势.我国铜冶炼工业在规模、工艺技术与装备、节能环保、资源利用等方面,已全面居于国际先进水平,目前应用的主要熔炼技术为奥图泰闪速熔炼,占50%;浸没式顶吹,占25%;其余为富氧底吹和侧吹.我国铜冶炼从精矿到阳极铜工艺能耗在200~400 kgce/t阳极铜之间,部分企业能耗水平居于世界领先,整体而言,在余热回收和过程节能方面,还有一定潜力;在SO2排放方面,我国铜冶炼工业硫的捕集率在98%~99.5%,与国际先进水平比较,还有一定差距,但整个铜冶炼工业SO2减排潜力小于10万t/a;高砷物料和重金属废水处理渣的资源化利用与安全处置,是今后我国铜冶炼工业减排的重要方向.  相似文献   

15.
为强化铜渣贫化回收渣含铜,设计了一种强化铜渣贫化的还原剂。采用HSC 6.0热力学软件计算对比了新型贫化剂与无烟煤、黄铁矿等常用贫化剂贫化熔炼渣回收铜锍的反应,并以某冶炼厂熔炼渣为原料进行试验并验证了新型贫化剂的强化作用。热力学计算结果表明,新型贫化剂还原铜渣(主要成分为Fe2SiO4和Fe3O4)的效果优于无烟煤和黄铁矿。试验结果表明,采用无烟煤、黄铁矿、新型贫化剂三种还原剂单独贫化回收渣含铜时,铜的回收率分别为30.83%、52.50%、66.67%。新型贫化剂能够强化回收渣含铜,有望为铜渣高效贫化并提高无烟煤等传统化石能源贫化铜渣利用率提供借鉴。  相似文献   

16.
结合铜阳极泥熔炼渣浮选精矿处理的实际需求,提出了精矿中铋脱除及回收利用的工艺,既实现了金、银等的富集和循环利用,又通过研究获得了脱砷最佳工艺参数,产出了铋85.6%的海绵铋产品,铋的综合回收率92.3%。  相似文献   

17.
东营方圆有色金属有限公司采用浮选工艺对铜熔炼渣和吹炼渣进行混合选矿,以回收炉渣中的铜等有价金属。实际生产中采用三段破碎+两段球磨的浮选工艺,通过合理控制破碎粒度、磨矿粒度以及加药量等工艺参数,有效地提高了铜等金属的回收率。  相似文献   

18.
从铜锌废渣生产电解铜和硫酸锌   总被引:2,自引:0,他引:2  
本文用碱洗-氨浸-酸溶-电积法分离回收铜锌熔炼渣和铸造渣中的铜锌,产出电铜和硫酸锌。铜、锌的回收率分别达到92.4%和93.1%。工艺条件较易控制,产品纯度高。  相似文献   

19.
氧气底吹炼铜作为重要的火法炼铜工艺,发挥着关键作用的同时也面临发展困境。矿物资源愈加复杂、大型化设备亟待优化、熔炼渣含铜偏高等问题阻碍氧气底吹炼铜工艺的可持续发展。模拟仿真研究具有成本低、安全性高、灵活性好的特点,成为解决氧气底吹炼铜难题的重要方法。本文介绍了氧气底吹炼铜模拟仿真研究方法和特点,对氧气底吹炼铜反应机理、炉内流动和设备改进3个重要方向模拟仿真研究现状进行分析和总结。结合当前氧气底吹炼铜技术原料复杂化、设备大型化、底吹连续化、控制智能化的发展趋势,提出氧气底吹炼铜模拟仿真未来研究方向。   相似文献   

20.
铜阳极泥冶炼渣是重要的铑资源,采用火法富集和湿法提取相结合的工艺对铜阳极泥冶炼渣中的铑进行回收利用,考察了火法富集过程中各种因素对富集效果的影响。结果表明:在PbO加入量为铜阳极泥冶炼渣的1.1倍(以质量计,下同)、B2O3加入量为铜阳极泥冶炼渣的1.1倍、Na2CO3加入量为铜阳极泥冶炼渣0.9倍、熔炼温度1 200℃,熔炼时间2 h的条件下,形成的铅合金中Rh含量达到7 536.4 g/t,富集6.2倍;在银粉加入量为铅合金的1倍、灰吹温度1 300℃、灰吹时间2.5 h条件下进行铅合金灰吹除杂富集,形成的银合金中Rh含量达到42 208.1 g/t,富集35.7倍;在浸出温度60℃、浸出时间1.5 h、浸出液固比为10∶1的条件下进行湿法提取,生产的铑粉纯度为91.2%,实现了铑二次资源综合回收。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号