首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
SiC改性碳复合材料的微观结构分析和力学性能研究   总被引:1,自引:0,他引:1  
利用SiC与碳基材料复合,采用原位合成技术制备了一种新型碳陶瓷复合材料.采用XRD和SEM技术分别表征材料的相组成和微观形貌结构,并利用万能材料试验机测试了复合材料的抗压和抗折性能.XRD测试结果表明,SiC改性碳陶瓷复合材料中没有新相产生.由SEM照片分析可知,SiC的掺杂破坏了石墨原有的层片状结构,并在碳石墨材料中观察到颗粒状晶体,随着SiC掺量的增加,散乱分布的晶粒有聚集长大的趋势,造成碳陶瓷复合材料结构的进一步破坏.力学性能测试结果表明,当掺入10%SiC(质量分数)时,材料的抗折强度最大,为58.8 MPa而在SiC掺量为5%(质量分数),其抗压强度达到最大,为157.4 MPa.  相似文献   

2.
SiC 涂层对不同碳基体氧化防护行为的研究   总被引:4,自引:3,他引:1  
为了提高碳材料的抗氧化性能,采用料浆烧结法在石墨和C/C复合材料上制备了SiC 抗氧化涂层.测试了SiC涂层在1200℃的高温下对不同碳基体的氧化防护能力,利用扫描电子显微镜 (SEM)、X-射线衍射仪(XRD)对涂层结构进行分析.结果表明:SiC涂层对不同碳材料的抗氧化防护行为有很大差异,在1200℃的高温下SiC涂层对石墨具有较好的抗氧化性能,而对C/C复合材料的氧化防护性能较差.  相似文献   

3.
以中间相沥青添加质量分数为50%的Si粉制备的炭泡沫预制体为坯体,在高温感应烧结炉中结合反应烧结工艺制备了SiC多孔陶瓷预制体.利用挤压铸造工艺制备了SiC多孔陶瓷增强铝基复合材料.采用扫描电子显微镜(SEM)观察了SiC多孔陶瓷骨架及复合材料的微观形貌和界面结构,通过X射线衍射分析仪(XRD)对多孔陶瓷预制体物相组成进行了分析.利用阿基米德排水法,测试了多孔陶瓷的孔隙率和复合材料的密度.结果表明:添加Si的质量分数为50%的炭泡沫预制体反应烧结后获得的SiC多孔陶瓷具有三维连续通孔结构,孔筋致密并且具有较高的开口孔隙率.通过挤压铸造工艺制备的SiC多孔陶瓷增强铝基复合材料界面结合良好,无明显缺陷.  相似文献   

4.
通过在1800℃和20MPa条件下热压烧结ZrB2和聚碳硅烷(PCS)裂解粉制得ZrB2-SiC-C复合材料。样品中从PCS裂解得到的SiC体积分数从0%开始按5%递增到30%。通过XRD、SEM、维氏压痕测试等手段表征了样品的相组成、微观结构和力学性能。研究表明可得到15%和20%SiC含量的致密均匀样品,其具有好的韧性,但由于C的存在,硬度相对较低。  相似文献   

5.
碳/碳复合材料既有良好的生物相容性,又有良好的力学性能,是一种极具潜力的新型生物材料。为提高其硬度、耐磨性,降低摩擦系数,需对其表面进行处理。本研究先利用包埋法在其表面制备SiC涂层,后利用非平衡磁控溅射技术在SiC涂层表面制备了掺铬碳膜。通过XRD,Raman,SEM,EDAX和XPS对其结构和形貌进行了表征,用MM-200型环块磨损试验机对膜的摩擦学性能进行了测定。研究结果表明:掺铬碳膜在XRD及拉曼光谱上都没有明显的峰,为非晶态结构。碳原子主要为类石墨碳。非晶态掺铬碳膜的摩擦系数约为0.100,比碳/碳复合材料低;磨损率为0.45×10-6mm3·(Nm)-1,也比碳/碳复合材料低。  相似文献   

6.
采用纸质材料制成三维管状模型,经过纸质模型碳化、反应性渗硅处理获得多孔SiC陶瓷预制体,选择铸造性能好、成形缺陷小的铸铁作为金属基体,采用铸渗法制备了SiC陶瓷增强金属基复合材料,通过XRD,SEM等分析手段研究了多孔SiC陶瓷和复合材料的显微组织和界面结构。研究表明,纸质模型800℃温度碳化,反应性渗硅温度1600℃时制备的多孔SiC陶瓷预制体三维结构稳定,烧结后变形小,微观组织结合紧密;通过铸渗法制备的SiC陶瓷增强金属基复合材料界面结合良好,无明显缺陷。该方法中增强相结构可设计性好,铸渗法制备多孔陶瓷金属基复合材料质量高,为多孔陶瓷增强金属基复合材料的获得提供了试验新方法。  相似文献   

7.
不同无机铵盐对陶瓷结合剂CBN砂轮造孔的应用研究   总被引:1,自引:1,他引:0  
分别研究了无机铵盐NH4F、NH4Cl、(NH4)2SO4和NH4HCO3的不同添加量对低温陶瓷结合剂CBN砂轮造孔的影响,采用气孔率、抗折强度以及试样SEM断口形貌对造孔效果进行了评价。结果表明:NH4Cl使砂轮开裂,不能作为低温陶瓷结合剂CBN造孔剂。NH4F造孔效果不明显,不适合造孔。(NH4)2SO4造孔剂的质量分数应控制在5%以内,质量分数达到5%时,砂轮孔隙率为36.14%,抗折强度为29.03MPa,气孔皆为小孔,气孔可调性差。NH。HCO,造孔剂质量分数应控制在15%以内,质量分数为5%时,砂轮孔隙率为34.19%,抗折强度为40.32MPa;质量分数增加到15%时,孔隙率达到42.5%,抗折强度为29.16MPa,且大孔径气孔比例随质量分数的提高而提高,气孔可调性好。  相似文献   

8.
C/C-SiC材料的快速制备及显微结构研究   总被引:3,自引:1,他引:3  
分别以碳毡和二维碳纤维为预制体,采用化学液相气化渗入法结合熔融渗硅反应法快速制备了C/C-SiC陶瓷复合材料。对这种材料的密度和气孔率进行了表征,并通过XRD,OM和SEM等方法对其相组成、显微结构和反应机理进行了研究。结果表明:不同预制体制备的C/C—SiC材料密度和气孔率分别为~2.0g/cm^3和~1.0%。其相组成包括反应生成β-SiC以及未反应的游离Si和C。C/C—SiC中纤维被环状的沉积碳包裹,生成SiC的反应只发生在Si与沉积碳之间,纤维没有损伤。Si,C和SiC各相分布和含量因预制体的不同而有明显差异。  相似文献   

9.
以铝粉、石墨粉和有机物聚碳硅烷(PCS)为原材料,采用预裂解及原位反应热压烧结的方法制备了Al4SiC4/C复合材料.通过XRD、SEM及力学分析等测试手段对材料的结构及性能进行了分析研究.对烧结材料的XRD分析结果表明所加入原材料按设计转化为新相.但组织观察表明两相均存在不同程度的团聚现象.Al4SiC4/C复合材料的力学行能随着Al4SiC4含量的增加而逐渐升高.  相似文献   

10.
以ZrC,SiC,石墨为原料,采用热压烧结法制备了ZrC-SiC-C_g三元复相陶瓷,研究了石墨及其用量对所制备陶瓷材料的微观结构和力学性能的影响.结果表明:石墨的加入有效地促进了ZrC-SiC-C_g复相陶瓷的烧结,在添加约10%(体积分数, 下同)石墨时,密度达到最大.同时复相陶瓷表面随着石墨含量的增加,逐渐变得粗糙,即由于石墨与基体的结合较弱使材料表面出现剥落现象.力学性能分析表明,材料的抗弯强度在石墨含量小于10%时并未明显降低,其断裂韧性随着石墨量的增加呈现先增加后降低的趋势,当石墨含量为10%时,断裂韧性出现最大值4.29 MPa·m~(1/2).材料的断裂方式是沿晶和穿晶断裂相结合.  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号