首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
本文用短支梁三点弯曲法及Fragment法测定了连续式电氧化处理粘胶基碳纤维与酚醛树脂及环氧树脂复合材料界面粘合性,并用SEM观察了其界面的形貌。结果表明:在本试验范围内经电化学中以使粘胶基碳纤维/酚醛树脂复合材料界面的粘合强度提高25%,而粘胶基碳纤维/环氧树脂复合材料界面的粘合强度可提高100%。这可能是由于环氧树脂可与碳纤维表面的官能团形成化学键的原因。  相似文献   

2.
本文报道了用连续式电化学氧化表面处理粘胶基碳纤维表面,并测定了处理后碳纤维的单丝强度,表面浸润性,表面活性官能团含量及表面形貌等表面物理化学性能。结果表明:粘胶基碳纤维经电化学氧化表面处理可以有效地在表面主生活性官能团和提高表面粗糙度,从而有效地提高表面润湿性,但经处理后单丝强度较易下降,因此需精确控制处理的条件。  相似文献   

3.
本文报道了用连续式电化学氧化表面处理粘胶基碳纤维表面,并测定了处理后碳纤维的单丝强度、表面浸润性、表面活性官能团含量及表面形貌等表面物理化学性能.结果表明:粘胶基碳纤维经电化学氧化表面处理可以有效地在表面产生活性官能团和提高表面粗糙度,从而有效地提高表面润湿性,但经处理后单丝强度较易下降,因此需精确控制处理的条件.  相似文献   

4.
电化学氧化表面处理提高粘胶基碳纤维的界面粘结性能   总被引:4,自引:0,他引:4  
通过动力学的方法研究了电化学处理前后接触角的变化 ,并用其表征碳纤维表面润湿性能的改变 ;通过拔出实验测定电化学处理前后碳纤维与树脂之间粘结性能的变化。结果表明 ,电化学处理后 ,碳纤维表面的润湿性大大改善 ,碳纤维与树脂的粘结程度提高至原来的 14 0 %~ 160 % ;研究还发现 ,不同种类的电解质电化学处理后对碳纤维表面的润湿性及其拔出强度的影响不同 ,( NH4) 2 SO4处理的碳纤维的润湿性能和拔出强度最好 ,H2 SO4处理的润湿性较之 Na OH的好 ,但拔出强度却不如 Na OH处理的高。且拔出强度越高 ,其断裂的模式趋向于单剪切断裂 ,拔出强度降低 ,其断裂变为多剪切断裂甚至为粉碎性断裂。  相似文献   

5.
碳纤维的电化学氧化表面处理   总被引:7,自引:0,他引:7  
本文综述了关于碳纤维电化学氧化表面处理的研究现状,碳纤维表面的化学表征,以及处理对碳纤维及其复合材料性能的影响;同时也总结了碳纤维表面处理对于提高碳纤维/树脂复合材料层间剪切强度的解释机理。  相似文献   

6.
7.
电化学氧化处理对碳纤维及EP复合材料性能的影响   总被引:1,自引:0,他引:1  
利用电化学氧化法对碳纤维(CF)进行表面改性处理,并将改性CF用于改性环氧树脂(EP),研究了CF处理前后纤维复丝拉伸强度和EP/CF复合材料的力学性能。结果表明,氧化处理改善了CF与基体的粘结性;经电化学氧化处理后CF的表面羟基含量提高39.96%,羧基/酯基含量提高141.06%,活性碳原子数增加34.28%;随着氧化电流密度的增加,CF复丝的拉伸强度和复合材料的层间剪切强度均呈现先增大后减小的变化趋势,当电流密度为0.2A/m^2时,复合材料的层间剪切强度提高31.70%。  相似文献   

8.
碳纤维电化学表面氧化处理效果的表征   总被引:2,自引:1,他引:2  
本文论述了电化学处理之后 ,碳纤维表面性能、表面结构以及碳纤维复合材料 (CFRP)力学性能的各种表征方法。  相似文献   

9.
就碳纤维的电化学氧化处理的研究,分别论述了影响其表面含氧基团含量的几个因素,如电解质的种类、电解质的浓度和氧化处理时间,以及表面处理后的表征方法.并总结了近年来的研究情况.  相似文献   

10.
11.
彭佳  江帆 《广州化工》2013,(16):110-112,124
用电化学氧化处理了碳纤维,并进行了红外光谱,浸润实验,拔出实验和循环伏安实验测定。结果发现,经过电化学氧化处理,碳纤维的表面接上了丰富的官能团,大量活性碳原子被剥离出来,浸润性质明显改善,拔出强度提高了33%,在溶液中电化学响应明显改善,适合作为电化学分析电极。  相似文献   

12.
王绍斌  徐仲榆 《炭素》1993,(2):14-18
采用NaOH溶液作为电解质,对碳纤维表面进行电化学阳极氧化处理。用化学分析法分析了碳纤维表面含氧官能团浓度的变化,借助于扫描电镜对碳纤维表面形态及SCFRER复合材料的剪切断口形貌进行了考察。  相似文献   

13.
介绍了在碳纤维增强树脂基复合材料中常用的碳纤维表面处理技术,以及不同处理方式对碳纤维力学性能及其增强的聚合物复合材料力学性能的影响。比较了各种表面处理技术的优缺点,并分析了碳纤维表面处理技术的发展趋势。目前,碳纤维的表面处理技术主要有电化学氧化法、偶联剂涂层处理、气相氧化法、液相氧化法和等离子体处理,其中,气相氧化法是目前比较常用的方法,电化学氧化法是目前唯一能够在碳纤维制备时可在线连续运行的技术,且经电化学氧化处理过的碳纤维增强树脂基复合材料的整体性能均得到提高。采用碳纳米管和石墨烯等碳纳米材料对碳纤维进行表面处理已成为新的研究热点,碳纤维表面处理的低成本化、绿色化和连续生产化将是今后的重点研究方向。  相似文献   

14.
碳纤维表面电化学氧化的研究   总被引:11,自引:2,他引:11  
刘杰  郭云霞  梁节英 《化工进展》2004,23(3):282-285
主要采用电化学氧化法对聚丙烯腈(PAN)基碳纤维进行连续氧化处理,利用扫描电子显微镜(SEM)、X射线光电子能谱(XPS)和动态力学热分析(DMTA)对碳纤维表面处理效果进行了研究。SEM表面形貌研究结果表明,碳纤维经电化学氧化处理后,其表面的粗糙度和比表面积增大。XPS表面化学分析表明,经电化学氧化处理后的碳纤维表面羟基含量提高55%,活性碳原子数增加18%。DMTA谱图表明经电化学氧化处理的碳纤维增强树脂基复合材料(CFRP)其玻璃化温度(Tg)提高5℃、损耗角正切(tanδ)较未处理的降低30%。定量计算出的界面黏结参数A和α与CHRP的层间剪切强度(ILSS)所反映的碳纤维与树脂间界面黏结效果是一致的。研究结果表明,采用适当的处理条件可使CFRP的ILSS提高20%以上。  相似文献   

15.
碳纤维增强树脂基复合材料以其优异的综合性能成为当今世界材料学科研究的重点。本文介绍了的碳纤维增强复合材料的性能,简述了增强机理、成型工艺及其应用领域和发展趋势。  相似文献   

16.
影响粘胶基碳纤维收率和性能的因素研究   总被引:5,自引:1,他引:5  
粘胶纤维是目前生产碳纤维的三大原材料之一。由于粘胶基碳纤维所固有的缺点,使其应用范围受到限制,也限制了它的发展,但由于它本身所具有的独特性能,在导弹、火箭等战略武器的应用领域具有不可取代的作用。本文主要详细介绍了制备过程对粘胶基碳纤维收率和性能的影响,并对粘胶基碳纤维的发展前景作了展望。  相似文献   

17.
碳纤维增强树脂基复合材料因其高的比强度和比模量,在航空航天等领域被广泛地应用。目前,碳纤维与树脂的界面性能是制约复合材料性能的关键因素。通过简单的水热法,在碳纤维表面合成了ZnO纳米棒阵列。在不同的生长时间下,制备了具有不同长度的ZnO纳米棒。ZnO纳米棒改性之后树脂对碳纤维的浸润性能明显提高。同时,复合材料的界面剪切强度得到明显提升,最大增幅达到了28.4%。通过扫描电子显微镜观测了单丝拔出后碳纤维的表面形貌,结果表明:改性碳纤维单丝拔出后表面粗糙而且残留了断裂的树脂基体,进一步证明碳纤维表面生长ZnO纳米棒之后界面强度得到改善。  相似文献   

18.
对比了聚丙烯腈(PAN)基碳纤维(PCF)和粘胶基碳纤维(RCF)的密度、平均比热容、拉伸性能,分析了PCF和RCF的表面形貌,研究了PCF增强S-157酚醛树脂(S-157 PF)复合材料(S-157 PF/PCF)和RCF增强S-157PF复合材料(S-157 PF/RCF)的烧蚀性能和弯曲性能,并对复合材料弯曲断口的微观形貌进行分析。结果表明,与PCF相比,RCF的密度略小,平均比热容略大,纤维表面粗糙,拉伸性能远低于前者;S-157 PF/RCF的烧蚀性能优于S-157 PF/PCF,但弯曲性能较差。  相似文献   

19.
PAN基碳纤维阳极电解氧化表面处理的研究   总被引:3,自引:1,他引:3  
借助XPS、力学分析、SEM扫描电镜、傅立叶红外光谱 ,较系统地考察了碳纤维表面组成与结构的变化及阳极氧化表面处理对碳纤维复合材料层间剪切强度的作用与影响。结果表明 :采用碳酸氢铵为电解质对碳纤维进行阳极电解氧化表面处理后 ,其复合材料的层间剪切断裂转变为以张力断裂形式为主 ;通过适当地增加碳纤维表面的羟基含量 ,提高活性碳原子数与非活性碳原子数比 ,可有效地改善碳纤维复合材料的使用性能 ,使碳纤维层间剪切强度提高 49% ,层间剪切强度达 85 .5MPa。  相似文献   

20.
利用正交法研究了电化学氧化法对中间相沥青基碳纤维表面处理过程中各因素对表面处理效果的影响,获得了优化的表面处理条件。利用傅里叶变换红外光谱扫描、X射线光电子能谱分析等手段,对优化的最佳条件下的表面处理效果进行表征。实验结果表明:采用浓硝酸预处理后,再进行电化学氧化表面处理可使碳纤维复合材料的层间剪切强度(ILSS)进一步提高,可达45.324 MPa,较未经硝酸预处理而直接进行电化学氧化表面处理的碳纤维提高了24.1%,较未表面处理碳纤维提高了49.4%  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号