首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
基于DEFORM有限元软件二次开发建立了40Cr钢本构关系,建立了高颈法兰封闭轧制成形的刚塑性有限元模型。进行了轧制过程中高颈法兰微观组织演变的研究,预测其成形过程中动态再结晶晶粒尺寸、体积分数和再结晶体积分数以及平均晶粒尺寸大小的变化情况,阐明了轧制工艺参数对微观组织细化的影响规律。结果表明:内外径部分在轧制中最先发生动态再结晶,最终轧制法兰的晶粒度可由119μm细化到11.368μm,这对产品性能的提高有重大影响。  相似文献   

2.
《塑性工程学报》2016,(4):101-106
为研究初始晶粒度对SA508-3钢热变形后微观组织的作用规律,将Φ10mm×15mm圆柱形试样置于电阻加热炉中加热并保温不同时间,以获得不同的初始晶粒度。运用面积法测得保温0min、30min和60min后的微观组织晶粒尺寸分别为650μm、950μm和1200μm。设计并进行了楔形试样高温镦粗实验,研究了SA508-3钢不同初始晶粒度在热变形过程中的动态再结晶体积分数和动态再结晶晶粒尺寸的演化规律。结果表明,当楔形试样压下率为50%时,不同初始晶粒尺寸对发生完全动态再结晶的临界应变有较大影响,初始晶粒尺寸越大,发生完全动态再结晶的临界应变越大。当动态再结晶完全发生时,3种不同初始晶粒尺寸对应的热变形后平均晶粒尺寸分别约为70μm、73μm和75μm。表明当变形量超过临界应变促使发生完全动态再结晶时,初始晶粒尺寸基本不影响热变形后的晶粒尺寸。  相似文献   

3.
通过单道次轧制试验,研究了AZ31B挤压镁合金板材在温度为365℃和450℃时的轧制性能,其变形量范围为10%~60%,应变速率为2.1s-1~5.0s-1。通过光学显微镜和扫描电镜观察了轧制变形中的微观组织及其演变。结果表明,在变形的初始阶段,孪生为主要的变形机理和硬化机制。由孪生变形积聚的畸变能和非基滑移的启动,导致了动态再结晶的形核与长大,增大变形速率可以抑制晶粒长大,使平均晶粒尺寸细化到7μm~10μm。365℃温轧制变形使板材晶粒明显细化,温度较高时,晶粒细化作用有限。在同一变形量下,随着轧制温度的升高,板材的晶粒呈长大趋势,在365℃轧制温度下,随着道次变形量的加大,细晶百分含量随之迅速增加。当轧制温度提高到450℃时,晶粒细化有限,晶粒尺寸保持在20μm以上。  相似文献   

4.
选用铸造Ni-Fe-Cu-Co四元耐蚀合金材料,采用热轧和冷轧对合金材料进行轧制处理,分析了不同工艺轧制及退火处理后合金再结晶微观组织。结果表明,耐蚀合金材料经1030℃热轧后,组织形貌为均匀细小的再结晶组织,温度过低不足以形成再结晶晶粒,温度过高会使晶粒不均匀长大,形成二次再结晶组织。耐蚀合金材料经冷轧后660~740℃保温20min,退火处理可以产生细小均匀的再结晶组织,晶粒平均尺寸为20μm;退火温度过低时无法生成再结晶组织,过高时晶粒会有所长大。  相似文献   

5.
以多向锻造AZ31镁合金为板坯进行高应变速率轧制成形,研究轧制温度对板材组织与力学性能的影响。结果表明:镁合金高应变速率轧制成形前期,孪生作用增强,形成大量的■拉伸孪生和■二次孪生;变形后期,由于孪生诱发动态再结晶的作用,合金晶粒组织明显细化。在压下量为80%的高应变速率轧制下,轧制温度为250~400℃时,轧制板材组织均发生了完全再结晶,平均晶粒尺寸随着轧制温度的升高从6.97μm增加至8.13μm,但由于轧制板坯的初始晶粒尺寸较小,晶粒尺寸随着轧制温度的升高变化较小;轧制板材的抗拉强度和伸长率均高于315 MPa和25%,表明高应变速率轧制工艺可以在较宽的温度区间内制备力学性能稳定的镁合金板材。  相似文献   

6.
热轧及退火处理对AZ31镁合金板材组织的影响   总被引:3,自引:1,他引:2  
采用单向轧制的方法制备了AZ31镁合金板材,分析了不同轧制温度、道次变形量等工艺参数对组织性能的影响规律.研究结果表明,在多道次轧制时,当轧制温度为400℃,单道次变形量为25%时,所得到的AZ31镁合金板材经过热处理后的晶粒细小且均匀,板材平均晶粒尺寸达到6 μm;当轧制温度为400℃,单道次变形量为35%时,得到的板材平均晶粒尺寸为10μm.在轧后热处理时,当热处理温度低于150℃,且保温时间为30 min的情况下,轧制板材再结晶不完全;当热处理温度在250~300℃之间时得到的板材平均晶粒尺寸为5μm;当热处理温度超过350℃时轧制板材再结晶组织粗大而且孪晶组织消失.当热处理温度为320℃,且保温时间为15 min时,开始发生再结晶,再继续增加保温时间到120 min时对组织没有明显影响.  相似文献   

7.
轧制及退火处理对铸轧态AZ31镁合金组织的影响   总被引:2,自引:0,他引:2  
利用金相显微镜、SEM及TEM对铸轧态AZ31镁合金在不同轧制及退火状态下的显微组织进行了研究.结果表明:铸轧态AZ31合金在420℃进行轧制变形时,合金以动态再结晶为主,且随着轧制变形量的增加.等轴再结晶晶粒尺寸逐渐变小.变形量为40%时.析出相得到破碎,晶界也变得更加清晰,此外,局部区域还出现了等轴再结晶晶粒;当变形量增大到90%时,合金以细小的等轴再结晶晶粒为主,晶粒尺寸约为10μm,且TEM观察可知合金基体内分布有较多细小的析出相,部分粗大再结晶晶粒边界附近还分布有一些由于动态再结晶而形成的细小晶粒.铸轧态AZ31合金在420℃轧制变形90%后再进行不同温度的退火,可知随温度升高再结晶晶粒长大明显,到450℃退火时,晶粒长大到20~30μm,对此退火样进行300℃温轧,基体内出现大量的孪晶和亚晶组织.  相似文献   

8.
温度对01420铝锂合金轧制开裂及晶粒细化的影响   总被引:1,自引:0,他引:1  
采用形变热处理方法制备了01420铝锂合金细晶板材,研究了预热温度、中间退火温度对板材轧制开裂及晶粒细化的影响.结果表明:板材在低温(<300℃)轧制时常常开裂,将开轧温度提高到400℃,在53%~70%轧制变形量后将板材在340~400℃退火2 h,可解决开裂问题.但中间退火温度对最终的再结晶晶粒大小有很大影响:温度为400℃时,合金发生了明显的部分再结晶,位错密度大大降低,虽获得了82%变形量的无开裂的板材,但再结晶后的晶粒粗大,平均晶粒尺寸约为16μm.温度为340、370℃时,合金发生了回复,无明显的再结晶发生,且退火温度越低,所保留的位错密度越高,81%轧制变形量的合金再结晶晶粒尺寸约为11μm.  相似文献   

9.
《铸造技术》2017,(8):1880-1883
采用低温加工和大变形强应变技术对机电工程用锆合金管进行了加工处理,研究了加压温度、轧制变形和退火对合金管显微组织的影响及其演变规律。结果表明,在经过热挤压变形后,锆合金管坯发生了动态回复和动态再结晶,其中,70%以上的晶粒尺寸都小于0.5μm,而尺寸在1μm以上的晶粒的含量较少;经过三次轧制和终轧处理后,锆合金管中的横截面组织呈折叠旋涡状,而纵截面组织呈纤维状,且随着变形量的增加,完整晶粒的模糊程度更高,纤维状组织更加细密;终轧后进行退火处理,锆合金管横截面和纵截面中都可见组织已经发生了完全再结晶,平均晶粒尺寸为2.48μm。  相似文献   

10.
定量研究了7055铝合金进行多道次热变形及固溶处理中的微观组织演变,采用Gleeble-1500D热模拟试验机对7055铝合金进行多道次热压缩,并对热压缩试样进行固溶处理。以EBSD为主要分析手段,对平均晶粒尺寸、再结晶体积分数、大角度晶界比例等微观组织特征进行定量表征。结果表明:升高变形温度和减少变形道次均有利于增大亚结构比例并且抑制再结晶。当变形温度由375℃升高到425℃时,7055铝合金固溶态显微组织的晶粒平均尺寸由65μm增大到420μm,再结晶体积分数由51%减小到10%;当变形道次由单道次增加到3道次时,固溶态显微组织的晶粒平均尺寸由56μm增大到84μm,再结晶体积分数由14%增大到23%。  相似文献   

11.
对铸态AZ31镁合金进行了轧制温度为320~460℃、平均应变速率为1.9~7.8 s -1的中高应变速率轧制,研究了不同轧制工艺参数下AZ31镁合金板的边裂长度及形核、扩展和止裂机制。结果表明,随着轧制温度的升高,边裂平均长度整体呈下降趋势。随着平均应变速率的增加,轧制边裂得到改善。边裂扩展路径上孪晶和再结晶是主要的微观结构。在中等应变速率轧制中,再结晶不完全,粗晶区和细晶区均存在。在高应变速率轧制中,再结晶速率快,再结晶完全,因此微观组织以细晶区为主。粗晶区的边裂由孪晶诱导产生并在边裂扩展路径上产生大量的孪晶,在边裂尖端,孪晶再结晶的产生抑制了边裂的扩展。细晶区的边裂是由孔洞形核、长大和合并引起的,大量细小的再结晶晶粒阻碍了边裂扩展,且晶粒越细小,边裂扩展受阻程度越大。  相似文献   

12.
采用显微组织观察、硬度测试、拉伸性能测试、杯突试验等方法,研究了固溶处理对常规轧制和横向轧制6082铝合金板材组织和性能的影响,并将常规轧制和横向轧制进行了对比。结果表明:经530℃×25 min固溶处理后,常规轧制和横向轧制的6082铝合金试样发生完全再结晶。常规轧制试样的晶粒平均尺寸为50μm,晶粒大小不均。横轧试样的平均晶粒尺寸为55μm,晶粒大小均匀,第二相充分回溶。固溶过程中,横向轧制试样比常规轧制试样优先发生再结晶,其晶粒平均尺寸更大。经530℃×25 min固溶处理的横轧6082铝合金试样性能更佳,其伸长率和IE值优于常规轧制试样的,其值分别达到27.9%和10.62 mm,合金具有更好的成形性。  相似文献   

13.
利用道次间退火改善镁合金轧制成形性的研究   总被引:16,自引:3,他引:13  
塑性较差的六方结构镁合金轧制时易出现裂纹,尤其是在1mm以下薄板带的终轧阶段。其原因是在较低温度下基面取向晶粒内形成的切变带不易扩展所致。研究了MB1,AZ31(MB2)镁合金在热模拟条件和实验室热轧过程中利用静态再结晶改善形变组织、细化晶粒、提高成形性的规律。实验表明,在选择的多道次轧制退火工艺下可顺利轧出0.3mm厚的薄板带,得到平均尺寸~7μm的等轴细晶。热模拟条件下得到的形变温度、形变量和形变组织的关系可帮助确定实际生产轧制过程中各道次轧制的温度。织构测定表明,各阶段退火前后都得到强的基面织构。终轧阶段无法利用{10^-12}拉伸孪晶的静态再结晶细化晶粒,而只能利用压缩孪晶/扩展的切变带的再结晶细化晶粒。本文对轧制时利用动、静态再结晶细化晶粒的潜力及工艺优化进行了讨论。  相似文献   

14.
实验研究了经不同道次差温热轧AZ31镁合金的金相组织,结合对轧制过程,尤其是轧件温度场的数值模拟结果,分析了AZ31镁合金差温热轧过程晶粒细化机制与主要影响因素,获得了通过轧制过程动态再结晶,使轧材晶粒尺寸随轧制道次增加,而持续细化的工艺参数,并制备出平均晶粒尺寸为5μm左右的细晶AZ31镁合金板材。  相似文献   

15.
采用热模拟实验研究了奥氏体再结晶区变形温度对微合金钢晶粒细化和宏观硬度的影响。结果表明:奥氏体再结晶区变形温度显著影响钢材的显微组织。变形温度由1100℃降至1000℃,原奥氏体晶粒尺寸由60.0μm大幅度细化至34.1μm,细化了43.2%。最终获得了铁素体+珠光体组织,铁素体晶粒尺寸也实现了显著的细化,由15.5μm细化至8.8μm,细化程度达43.2%。但奥氏体再结晶区变形温度对宏观硬度的影响不大。因此,为了提高钢材,尤其是厚板的强韧性,再结晶区变形温度应适当降低。  相似文献   

16.
通过光学显微镜、背散射电子衍射分析(EBSD)和室温拉伸试验研究了多道次连续轧制AZ31镁合金板材经200~400℃不同温度退火1 h后晶粒尺寸和微观织构的演化及其与力学性能的关系。结果表明:轧制板材经250℃×1 h退火后,静态再结晶几乎完成,晶粒细小均匀,平均晶粒尺寸约5.5μm,综合力学性能良好,抗拉强度和断后伸长率分别达到261 MPa和26.7%;当退火温度不高于350℃时,退火态板材基面织构较轧态低且差别较小。随退火温度升高,晶粒缓慢长大,晶界取向角分布由10°和30°双峰连续分布转变为30°单峰连续分布。此时,抗拉强度主要与晶粒尺寸有关。当退火温度达到400℃时,再结晶晶粒发生异常长大,基面织构急剧增强,晶界取向角呈离散分布,导致抗拉强度增加,而伸长率显著降低。  相似文献   

17.
对变形镁合金AZ31进行了横向和高向锻造,然后进行轧制,检测了不同锻造比的板坯经轧制后的组织性能变化。结果表明:锻造时,随着锻造比的增大,晶粒组织逐渐细化;当锻造比为1.67时,材料的硬度达到最大值84.4HV,当锻造比为1.82时,材料的硬度为78.9HV;晶粒大小对动态再结晶晶粒尺寸有很大影响,晶粒尺寸较大时,再结晶晶粒尺寸也较大;锻造比为1.82的试样经轧制变形后,可以获得良好的力学性能。其晶粒平均尺寸、抗拉强度和伸长率为分别为3.7μm、281.75MPa、12.7%。  相似文献   

18.
利用OM、EBSD等测试技术分析了3道次轧制的AZ80镁合金组织形态,研究了合金动态析出过程中拉伸性能与组织结构转变。结果表明:合金1道次变形后,组织发生再结晶,生成众多不同尺寸的再结晶晶粒,尺寸明显细化;2道次变形后,晶粒获得更大程度的细化;3道次变形后,组织已被动态析出相覆盖,此时合金晶粒发生了更显著的细化,平均晶粒尺寸为2.0μm,形成更多的高密度位错缠结。试样硬度与轧制道次之间存在明显的线性关系。在轧制3道次时硬度达到最大值,为105HV。试样断口分析表明,随着轧制道次的增加,晶粒得到细化。  相似文献   

19.
预变形和过时效对AA2195铝锂合金晶粒的细化   总被引:1,自引:1,他引:0  
通过金相和扫描电镜等分析手段,研究预变形和过时效对机械热处理细化AA2195铝锂合金晶粒的影响.结果表明:过时效前的预轧制变形所形成的应变区为第二相提供了均匀的形核位置,提高了第二相粒子的体积分数;与400℃单级过时效相比,预变形后采用300℃+400℃双级过时效可使第二相粒子间距由2.09μm增大到3.43μm,在轧制过程中有利于形成独立的高能应变区,为再结晶提供更多的形核位置,进一步细化、等轴化AA2195铝锂合金晶粒,最终晶粒尺寸由12.6 μm细化至8.8μm,晶粒纵横比由1.61减小至1.27.  相似文献   

20.
采用金相显微镜、透射电镜、X射线衍射仪等研究6111铝合金经不同温度固溶、预时效后的组织和晶间腐蚀情况。结果表明,在不同温度固溶和预时效后,晶粒均发生了再结晶,部分晶粒沿着轧制方向拉长,520℃和540℃固溶后的平均晶粒尺寸为60~70μm, 560℃固溶后的平均晶粒尺寸略大于520℃和540℃,为80μm左右。520℃固溶、80℃预时效后的抗晶间腐蚀最差,腐蚀深度为191.59μm, Q相在晶界处连续分布,表面晶粒尺寸较小;540℃固溶、80℃预时效后的抗晶间腐蚀最好,腐蚀深度为59.63μm, Q相在晶界处断续分布,并未发现尺寸较小的表面晶粒。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号