首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two ternary TiAl-based alloys with chemical compositions of Ti-46.4 at. pct Al-1.4 at. pct Si (Si poor) and Ti-45 at. pct Al-2.7 at. pct Si (Si rich), which were prepared by reaction powder processing, have been investigated. Both alloys consist of the intermetallic compounds y-TiAl, α2-Ti3Al, and ξ-Ti5(Si, Al)3. The microstructure can be described as a duplex structure(i.e., lamellar γ/α2 regions distributed in γ matrix) containing ξ precipitates. The higher Si content leads to a larger amount of ξ precipitates and a finer y grain size in the Si-rich alloy. The tensile properties of both alloys depend on test temperature. At room temperature and 700 °C, the tensile properties of the Si-poor alloy are better than those of the Si-rich alloy. At 900 °C, the opposite is true. Examinations of tensile deformed specimens reveal ξ-Ti5(Si, Al)3 particle debonding and particle cracking at lower test temperatures. At 900 °C, nucleation of voids and microcracks along lamellar grain boundaries and evidence for recovery and dynamic recrystallization were observed. Due to these processes, the alloys can tolerate ξ-Ti5(Si, Al)3 particles at high temperature, where the positive effect of grain refinement on both strength and ductility can be utilized.  相似文献   

2.
Solidification microstructures of arc-melted, near-equiatomic TiAl alloys containing boron additions are analyzed and compared with those of binary Ti-Al and Ti-B alloys processed in a similar fashion. With the exception of the boride phase, the matrix of the ternary alloy consists of the same α2 (DO19) and γ (Ll0) intermetallic phases found in the binary Ti-50 at. pct Al alloy. On the other hand, the boride phase, which is TiB (B27) in the binary Ti-B alloys, changes to TiB2 (C32) with the addition of Al. The solidification path of the ternary alloys starts with the formation of primary α (A3) for an alloy lean in boron (∼1 at. pct) and with primary TiB2 for a higher boron concentration (∼5 at. pct). In both cases, the system follows the liquidus surface down to a monovariant line, where both α and TiB2 are solidified concurrently. In the final stage, the α phase gives way to γ, presumably by a peritectic-type reaction similar to the one in the binary Ti-Al system. Upon cooling, the α dendrites order to α2 and later decompose to a lath structure consisting of alternating layers of γ and α2.  相似文献   

3.
Transition-metal trialuminide intermetallics such as Al3Zr and Al3Ti, having low densities and high elastic moduli, are good candidates for the in-situ reinforcement of light-metal matrices based on Al and Mg alloys. In this work, in-situ composites based on Al and Al-Mg matrices reinforced with an Al3Zr intermetallic were successfully processed by conventional ingot metallurgy. The microstructural studies showed that “needle” or “feathery”-like particles of Al3Zr phase, whose volume fraction increased with increasing concentration of Zr, were formed in the Al matrix in the investigated range of Zr contents from 0.9 to 11.6 at. pct. Properties of Al-Zr alloys were investigated as a function of volume fraction of Al3Zr. It is shown that the density, hardness, and yield strength of the in-situ Al/Al3Zr composites can be quite adequately described by the composite rule-of-mixtures (ROM) behavior. Alloying of a binary Al-2.4 at. pct Zr alloy with Mg up to ∼25 at. pct reduces profoundly its density and, additionally, strengthens the matrix by a Mg solid-solution strengthening mechanism.  相似文献   

4.
We proposed a new method for developing Ni-base turbine disc alloy for application at temperatures above 700 °C by mixing a Ni-base superalloy U720LI with a two-phase alloy Co-16.9 wt pct Ti in various contents. The microstructure and phase stability of the alloys were analyzed using an optical microscope, a scanning electron microscope, energy-dispersive spectroscopy, and an X-ray diffractometer. The yield strength was studied by compression tests at temperatures ranging from 25 °C to 1200 °C. The results show that all the alloys had a dendritic structure. Ni3Ti (η) phase was formed in the interdendritic region in the alloys with the addition of Co-16.9 wt pct Ti, and its volume fraction increased with the increase in the addition of Co-16.9 wt pct Ti. The results of exposure at 750 °C show that the addition of Co-16.9 wt pct Ti to U720LI had a great effect on suppressing the formation of σ phase due to the reduced Cr content in the γ matrix. Compared to U720LI, the alloys with the addition of Co-16.9 wt pct Ti possessed higher yield strength. The solid-solution strengthening of γ and γ′ and higher volume fraction of γ′ were assumed to cause this strength increase.  相似文献   

5.
The grain size, grain boundary character distribution (GBCD), creep, and tensile behavior of INCONEL alloy 718 (IN 718) were characterized to identify processing-microstructure-property relationships. The alloy was sequentially cold rolled (CR) to 0, 10, 20, 30, 40, 60, and 80 pct followed by annealing at temperatures between 954 °C and 1050 °C and the traditional aging schedule used for this alloy. In addition, this alloy can be superplastically formed (IN 718SPF) to a significantly finer grain size and the corresponding microstructure and mechanical behavior were evaluated. The creep behavior was evaluated in the applied stress (σ a ) range of 300 to 758 MPa and the temperature range of 638 °C to 670 °C. Constant-load tensile creep experiments were used to measure the values of the steady-state creep rate and the consecutive load reduction method was used to determine the values of backstress (σ0). The values for the effective stress exponent and activation energy suggested that the transition between the rate-controlling creep mechanisms was dependent on effective stresses (σ e a σ0) and the transition occurred at σ e ≅ 135 MPa. The 10 to 40 pct CR samples exhibited the greatest 650 °C strength, while IN 718SPF exhibited the greatest room-temperature (RT) tensile strength (>1550 MPa) and ductility (ε f >16 pct). After the 954 °C annealing treatment, the 20 pct CR and 30 pct CR microstructures exhibited the most attractive combination of elevated-temperature tensile and creep strength, while the most severely cold-rolled materials exhibited the poorest elevated-temperature properties. After the 1050 °C annealing treatment, the IN 718SPF material exhibited the greatest backstress and best creep resistance. Electron backscattered diffraction was performed to identify the GBCD as a function of CR and annealing. The data indicated that annealing above 1010 °C increased the grain size and resulted in a greater fraction of twin boundaries, which in turn increased the fraction of coincident site lattice boundaries. This result is discussed in light of the potential to grain boundary engineer this alloy. INCONEL is a registered trademark of Special Metals Corp., Huntington, WV. This article is based on a presentation made in the symposium entitled “Processing and Properties of Structural Materials,” which occurred during the Fall TMS meeting in Chicago, Illinois, November 9–12, 2003, under the auspices of the Structural Materials Committee.  相似文献   

6.
Hot-rolled, binary Mg-Nd alloys with compositions ≥0.095 at. pct undergo the texture weakening phenomenon that has been reported in a number of Mg–rare earth (RE) alloys. However, alloys with compositions ≤0.01 at. pct retain a strong basal texture typical of pure Mg and other Mg alloys. Measurements of intragranular misorientation axes obtained using electron backscatter diffraction (EBSD) show that more dilute alloys contain predominantly basal $ < a > $ < a > dislocations, while richer alloys contain primarily prismatic $ < a > $ < a > dislocations. It is suggested that this change in dislocation content is related to a change in the dynamic recrystallization (DRX) mechanism. Metastable second-phase Mg x Nd1–x intermetallic particles are present within the alloys, and an annealing study indicates that the alloys undergoing texture weakening have grain sizes well predicted by classical Zener drag theory. Even though the more dilute alloys also contain second-phase particles, they are not sufficient to induce pinning. The promotion of nonbasal slip and the reduction in grain boundary mobility due to Zener drag are suggested as controlling mechanisms that promote the observed texture weakening phenomena.  相似文献   

7.
The high-temperature deformation behavior of two ultrahigh boron steels containing 2.2 pct and 4.9 pct B was investigated. Both alloys were processedvia powder metallurgy involving gas atomization and hot isostatic pressing (hipping) at various temperatures. After hipping at 700 °C, the Fe-2.2 pct B alloy showed a fine microstructure consisting of l-μm grains and small elongated borides (less than 1μm) . At 1100 °C, a coarser microstructure with rounded borides was formed. This alloy was superplastic at 850 °C with stress exponents of about two and tensile elongations as high as 435 pct. The microstructure of the Fe-4.9 pct B alloy was similar to that of the Fe-2.2 pct B alloy showing, in addition, coarse borides. This alloy also showed low stress exponent values but lacked high tensile elongation (less than 65 pct), which was attributed to the presence of stress accumulation at the interface between the matrix and the large borides. A change in the activation energy value at theα-γ transformation temperature was seen in the Fe-2.2 pct B alloy. The plastic flow data were in agreement with grain boundary sliding and slip creep models. J.A. JIMéNEZ, Postdoctoral Fellow, formerly with Centro Nacional de Investigaciones Metalurgicas, C.S.I.C.  相似文献   

8.
Ti57−x Cu15Ni14Sn4+x Nb10 (x = 0, 5, or 10) alloys were prepared by copper mold casting. At Sn = 4 at. pct, a dendrite/ultrafine-structured multicomponent alloy was obtained, which exhibits 1271 MPa yield strength, 77 GPa Young’s modulus, and 2 pct plasticity at room temperature for 3-mm-diameter samples. The cooling rate significantly affects the as-cast microstructure and the mechanical properties. For 5-mm-diameter samples, the alloy exhibits 1226 MPa yield strength, 63 GPa Young’s modulus, and 2.5 pct plasticity. At Sn = 9 at. pct, Ti-, Sn-, and Nb-rich particles precipitate primarily. This near-hypereutectic alloy composition leads to the precipitation of intermetallics, which deteriorate the mechanical properties and result in the coexistence of ductile and brittle fracture mechanisms. At Sn = 14 at. pct, the alloy composition is completely in the intermetallic region, thus inducing the formation of Ti2Cu, Ti2Ni, and Ti3Sn intermetallics. The alloy becomes very brittle because the intermetallic compounds dominate the fracture process.  相似文献   

9.
The present article describes the microstructural changes during recrystallization annealing of a 73 pct cold-rolled Ni3Al(B,Zr) alloy along with a study of the recrystallization kinetics. The deformed γ regions, mostly within and near the shear bands, appear to recrystallize first. The recrystallization front leaves behind a lamellar discontinuous precipitation within the newly formed strain-free γ grains, when annealing is done at lower temperatures. At higher annealing temperatures, the precipitates within γ assume a globular morphology. This precipitate is presumably made up of γ′ particles. When γ recrystallization is nearly complete, the γ′ regions start to recrystallize. The two-stage recrystallization process is also corroborated from the kinetics results, which show that the activation energy up to 50 pct recrystallization of the material is only 117 kJ/mole, whereas beyond 50 pct until the completion of recrystallization, an activation energy of ∼274 kJ/mole is obtained.  相似文献   

10.
A Laves phase, Fe2Ta, was utilized to obtain good elevated temperature properties in a carbon-free iron alloy containing 1 at. pct Ta and 7 at. pct Cr. Room temperature embrittlement resulting from the precipitation of the Laves phase at grain boundaries was overcome by spheroidizing the precipitate. This was accomplished by thermally cycling the alloys through theαγ transformation. The short-time yield strength of the alloys decreased very slowly with increase in test temperature up to 600°C, but above this temperature, the strength decreased rapidly. Results of constant load creep and stress rupture tests conducted at several temperatures and stresses indicated that the rupture and creep strengths of spheroidized 1 Ta−7 Cr alloy were higher than those of several commercial steels containing chromium and/or molybdenum carbides but lower than those of steels containing substantial amounts of tungsten and vanadium. When molybdenum was added to the base FeTa-Cr alloy, the rupture and creep strengths were considerably increased. Formerly with Lawrence Berkeley Laboratory.  相似文献   

11.
Nanocrystalline equiatomic high-entropy alloys (HEAs) have been synthesized by mechanical alloying in the Cu-Ni-Co-Zn-Al-Ti system from the binary CuNi alloy to the hexanary CuNiCoZnAlTi alloy. An attempt also has been made to find the influence of nonequiatomic compositions on the HEA formation by varying the Cu content up to 50 at. pct (Cu x NiCoZnAlTi; x = 0, 8.33, 33.33, 49.98 at. pct). The phase formation and stability of mechanically alloyed powder at an elevated temperature (1073 K [800 °C] for 1 hour) were studied. The nanocrystalline equiatomic Cu-Ni-Co-Zn-Al-Ti alloys have a face-centered cubic (fcc) structure up to quinary compositions and have a body-centered cubic (bcc) structure in a hexanary alloy. In nonequiatomic alloys, bcc is the dominating phase in the alloys containing 0 and 8.33 at. pct of Cu, and the fcc phase was observed in alloys with 33.33 and 49.98 at. pct of Cu. The Vicker’s bulk hardness and compressive strength of the equiatomic nanocrystalline hexanary CuNiCoZnAlTi HEA after hot isostatic pressing is 8.79 GPa, and the compressive strength is 2.76 GPa. The hardness of these HEAs is higher than most commercial hard facing alloys (e.g., Stellite, which is 4.94 GPa).  相似文献   

12.
Prealloyed, gas-atomized (GA) Ti-47Al-3Cr alloy powder, containing about 70 pct of the α 2 (Ti3Al) phase and 30 pct of the γ (TiAl) phase, was fully amorphized by mechanical alloying. The amorphous phase was stable during heating to 600 °C, but decomposed at higher temperatures, with an exothermic reaction peak at 624 °C as the material transformed to a mixture of α 2 and γ and then to a fully γ structure at 722 °C. A nanocrystalline compact with a mean grain size of 42 nm was obtained by hot isostatic pressing (HIP’ing) of the amorphous powder at 725 °C. Isothermal annealing experiments were conducted in the two-phase α+γ field, at 1200 °C, using holding times of 5, 10, 25, and 35 hours, followed by air cooling. The X-ray diffractometry and analytical transmission electron microscopy investigations carried out on annealed and air-cooled specimens revealed only the presence of the γ grains, which coarsened on annealing. Initially, the grains grew, followed by a saturation stage after annealing for 25 hours, with a saturation grain size of about 1 μm. This grain growth and saturation behavior can be described with a normal grain growth mechanism in which a permanent pinning force is taken into account. Twins formed in the γ grains as a result of annealing and air cooling and exhibited a common twinning plane of (111) with the matrix phase. The minimum γ grain size in which twinning occurred in the annealed specimens was determined to be 0.25 μm, which suggests that twinning is energetically unfavorable in the nanometer-sized grains.  相似文献   

13.
Evolution of boride morphologies in TiAl-B alloys   总被引:2,自引:0,他引:2  
The solidification of γ-TiAl alloys with relatively low (<2 at. pct) additions of boron is discussed. Binary Ti-Al alloys containing 49 to 52 at. pct Al form primary α-(Ti) dendrites from the melt, which are subsequently surrounded by γ segregate as the system goes through the peritectic reactionL + α →γ. Alloys between 45 and 49 at. pct Al go through a double peritectic cascade, forming primary β-(Ti) surrounded by α-(Ti) and eventually by γ in the interdendritic spaces. Boron additions to these binary alloys do not change the basic solidifi-cation sequence of the matrix but introduce the refractory compound TiB2 in a variety of mor-phologies. The boride develops as highly convoluted flakes in the leaner alloys, but needles, plates, and equiaxed particles gradually appear as the B content increases above ∼1 at. pct. Increasing the solidification rate initially promotes the formation of flakes over plates/needles and ultimately gives way to very fine equiaxed TiB2 particles in the interdendritic spaces of the metallic matrix. Furthermore, the primary phase selection in the 49 to 52 at. pct Al range changes from α-(Ti) to β-(Ti) at supercoolings of the order of 200 K. The different boride morphologies are fully characterized, and their evolution is rationalized in terms of differences in their nucleation and growth behavior and their relationship to the solidification of the inter-metallic matrix. Formerly Research Assistant, University of California-Santa Barbara (UCSB) Formerly Professor of Materials and Dean of the College of Engineering at UCSB  相似文献   

14.
Symmetrical push-pull low-cycle fatigue (LCF) tests were performed on INCONEL 718 superalloy containing 12, 29, 60, and 100 ppm boron (B) at room temperature (RT). The results showed that all four of these alloys experienced a relatively short period of initial cyclic hardening, followed by a regime of softening to fracture at higher cyclic strain amplitudes (Δɛ t /2≥0.8 pct). As the cyclic strain amplitude decreased to Δɛ t /2≤0.6 pct, a continuous cyclic softening occurred without the initial cyclic hardening, and a nearly stable cyclic stress amplitude was observed at Δɛ t /2=0.4 pct. At the same total cyclic strain amplitude, the cyclic saturation stress amplitude among the four alloys was highest in the alloy with 60 ppm B and lowest in the alloy with 29 ppm B. The fatigue lifetime of the alloy at RT was found to be enhanced by an increase in B concentration from 12 to 29 ppm. However, the improvement in fatigue lifetime was moderate when the B concentration exceeded 29 ppm B. A linear relationship between the fatigue life and cyclic total strain amplitude was observed, while a “two-slope” relationship between the fatigue life and cyclic plastic strain amplitude was observed with an inflection point at about Δɛ p /2=0.40 pct. The fractographic analyses suggested that fatigue cracks initiated from specimen surfaces, and transgranular fracture, with well-developed fatigue striations, was the predominant fracture mode. The number of secondary cracks was higher in the alloys with 12 and 100 ppm B than in the alloys with 29 and 60 ppm B. Transmission electron microscopy (TEM) examination revealed that typical deformation microstructures consisted of a regularly spaced array of planar deformation bands on {111} slip planes in all four alloys. Plastic deformation was observed to be concentrated in localized regions in the fatigued alloy with 12 ppm B. In all of the alloys, γ″ precipitate particles were observed to be sheared, and continued cyclic deformation reduced their size. The observed cyclic deformation softening was associated with the reduction in the size of γ″ precipitate particles. The effect of B concentration on the cyclic deformation mechanism and fatigue lifetime of IN 718 was discussed.  相似文献   

15.
Room temperature tension-tension fatigue tests were performed on two lamellar γ/γ′-δ alloys, one with 0 pct Cr and one with 6 pct Cr. The 6 pct Cr alloy was solidified at 3 cmJh while the 0 pct Cr alloy was solidified at 3 cm/h and 5.7 cm/h. Fatigue testing was done on both alloys in the as-directionally solidified condition and on the 0 pct Cr alloy after heat treatment. Increasing the growth speed of the 0 pct Cr alloy increased the fatigue life of the material at stresses above the 107 cycle fatigue limit. Partial solution treating and aging of the 0 pct Cr alloy,R = 3 cm/h, increased the fatigue life relative to the as-directionally solidified material at high stresses, to the same extent as increasing the growth speed. Full solution treatment and aging of the 0 pct Cr alloy,R = 5.7 cm/ h, caused a reduction in the fatigue life relative to the as-directionally solidified material. Fatigue cracking tended to be faceted in the 6 pct Cr alloy as opposed to the more ductile failure of the 0 pct Cr alloy. Microstructural perfection, grain size and shape, interlamellar spacing, longitudinal cracking, and longitudinal and transverse ductility all are believed to have influenced the fatigue resistance of the alloys.  相似文献   

16.
Void nucleation and growth was studied in three binary equiaxed α-β Ti-Mn alloys containing 1.8 wt pct Mn (alloy 2), 3.9 wt pct Mn (alloy 3), and 5.8 wt pct Mn (alloy 4) given heat treatments to vary the alpha size at constant volume fraction of alpha. Void nucleation rates expressed as number of voids per unit volume,N v, increased exponentially with true strain, ε. WhenN v was normalized with respect to the number of alpha particles or grains per unit volume, Nα T,N v/Nα T was found to be largest for the largest alpha size in each alloy series. Void size distributions as a function of strain for one alloy containing 3.9 wt pct Mn (alloy 3 given heat treatment B,3B) were presented and, as expected, the largest number of voids occurred at the smallest void sizes. Void growth rates for alloys 3 and 4 were found to increase with increasing particle size and this was ascribed to decreasing constraints to slip with increasing particle size. For alloy 2C with the largestα grain size void growth rates were smallest and this behavior was attributed to the growth inhibiting effects of multiple twinning. Evidence was adduced to show that nucleating voids grow more rapidly than established voids. T. V. Vijayaraghavan, Formerly Graduate Student, Polytechnic University, Brooklyn, NY  相似文献   

17.
A method has been developed to produce grain sizes as small as 5 μm in alloys of β-CuAlNi. The alloys were of eutectoid composition and a procedure was developed for determining the composition of a eutectoid alloy having any required value for transition temperature (M s ). The thermo-mechanical treatment involved two sequential stages of warm rolling followed by recrystallization. The alloys produced were single phase β-type with no second phase being present. Characteristic two-stage stress-strain curves were obtained for most of the specimens. It was generally found that the tensile strength and strain to failure increased with decreasing grain size according to a Hall-Petch type relationship down to a grain size of 5 μm. A fracture strength of 1200 MPa and a fracture strain of 10 pct were obtained in the best alloy. It was found that the major recovery mode, whether pseudoelastic or strain-memory, did not have any significant effect on the total recovery obtained. Recovery properties were not affected significantly by decreasing grain size, and 86 pct recovery could still be obtained at a grain size of around 10 μm. Grain refinement improved the fatigue life considerably, possibly due to the high ultimate fracture stress and ductile fracture mode. A fatigue life of 275,000 cycles could be obtained for an applied stress of 330 MPa and a steady state strain of 0.7 pct. At fine-grain sizes most of the fractures were due to transgranular-type brittle fracture and micro void-type ductile fracture, depending on the alloy composition. It was suggested that the difference between the alloys was due to differences in oxygen segregation at the grain boundaries.  相似文献   

18.
Design of quaternary Ir-Nb-Ni-Al refractory superalloys   总被引:2,自引:0,他引:2  
We propose a method for developing new quaternary Ir-Nb-Ni-Al refractory superalloys for ultra-high-temperature uses, by mixing two types of binary alloys, Ir-20 at. pct Nb and Ni-16.8 at. pct Al, which contain fcc/L12 two-phase coherent structures. For alloys of various Ir-Nb/Ni-Al compositions, we analyzed the microstructure and measured the compressive strengths. Phase analysis indicated that three-phase equilibria—fcc, Ir3Nb-L12, and Ni3Al-L12—existed in Ir-5Nb-62.4Ni-12.6Al (at. pct) (alloy A), Ir-10Nb-41.6Ni-8.4Al (at. pct) (alloy B), and Ir-15Nb-20.8Ni-4.2Al (at. pct) (alloy C) at 1400 °C; at 1300 °C, three phase equilibria—fcc, Ir3Nb, and Ni3Al—existed in alloys A and C and four-phase equilibria—fcc, Ir3Nb, Ni3Al, and IrAl-B2—existed in alloy B. The fcc/L12 coherent structure was examined by using transmission electron microscopy (TEM). At a temperature of 1200 °C, the compressive strength of these quaternary alloys was between 130 and 350 MPa, which was higher than that of commercial Ni-based superalloys, such as MarM247 (50 MPa), and lower than that of Ir-based binary alloys (500 MPa). Compared to Ir-based alloys, the compressive strain of these quaternary alloys was greatly improved. The potential of the quaternary alloys for ultra-high-temperature use is also discussed.  相似文献   

19.
The microstructure and tensile behavior of an Al-3Cu-l.6Li-0.8Mg-0.2Zr alloy, produced by splatquenched powder metallurgy processing, were studied. The alloy exhibited homogeneous deformation, both in bulk samples and duringin situ TEM studies. This is in contrast to the strain localization that is frequently observed in Mg-free Al-Cu-Li-X alloys. The difference in deformation mode is attributed to a fine distribution of Ś (Al2CuMg) which precipitates up to the grain boundaries. A processing treatment involving 2 pct stretch prior to aging resulted in a yield strength of 555 MPa, a reduction in area of 29 pct, and a strain to fracture of 8.8 pct. This represents an attractive improvement in specific properties compared with 7075-T76 having a similar texture.  相似文献   

20.
The effects of 0.5 at. pct of boron doping on the microstructures and mechanical properties of γ/γ′ nickel-aluminum alloys have been investigated in the present study. A nickel-rich grain-boundary zone was observed in the boron-doped alloy after homogenization at 1100 °C and prolonged annealing at 1200 °C. Boron doping also caused remarkable improvements in toughness and tensile elongation and caused the fracture mode to change from completely intergranular to completely transgranular. The grain growth following recrystallization at 1200 °C was found to be retarded upon boron doping. A sudden increase in tensile elongation and a sudden drop in hardness were also observed upon prolonged heating during isothermal annealing at 1200 °C. The results are interpreted with reference to boron-nickel cosegregation at the grain boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号