首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为理解和揭示第三种应变时效现象,对DH36钢在拉、压加载,温度从77 K到1 000 K,应变率从0.001/s到3000/s下的塑性流动行为进行了系统研究,分析了时效发生的规律、特性以及时效发生的温度、应变率和应变的关系.同时,基于间隙原子与位错相互作用的本质,探讨了第三种应变时效现象与滞弹性材料机械波谱(即内耗峰)关联性.研究表明:金属在第三种应变时效温度区经变形后,材料的强度会提高,且材料的韧性(即断裂应变)并不变化;第三种应变时效的发生需要一定的预变形以造成大量空位,这将有益于间隙原子在位错周围的扩散形成,当温度和变形率达到某一匹配值时,在后续连续的塑性变形过程中,围绕位错的间隙原子气团连续对位错拖曳使得位错滑移阻力增加,导致第三种应变时效发生;DH36钢应变时效发生时的峰值应力温度与应变率呈现指数关系;第三种应变时效发生的温度区与金属机械波谱(内耗峰)温度区基本一致,都具有波动性,所以本质上第三种应变时效是机械波谱的另一表现形式.  相似文献   

2.
研究了不同应变速率对5083铝合金组织性能的影响。结果表明,随着应变速率的提高,合金强度呈下降趋势,在一定量的塑性变形之后,应力应变曲线出现锯齿状屈服行为。在快应变速率区间,应力锯齿方向朝上;在慢应变速率区间,应力锯齿方向朝下。分析认为,应变速率的降低带来的应力升高主要是由于位错与溶质原子的交互作用导致的,向上的应力锯齿对应于位错钉扎的过程,向下的应力锯齿对应于位错脱钉的过程。  相似文献   

3.
王必磊  李永灿  宋长江 《材料导报》2018,32(15):2659-2665
低碳钢因其优良的塑性常被用于家电和汽车面板。在低碳钢工业生产中,节能、高效的连续退火工艺取代能耗高、效率低的罩式退火工艺后,低碳钢在使用过程中遇到了严重的质量问题——因时效而产生的屈服延伸现象。屈服延伸现象是指低碳钢经人工时效或长时间的自然时效后,钢板表面在变形过程产生不均匀塑性变形而出现褶皱的现象,又称吕德斯带,该现象对钢板的表面质量和性能造成严重的损害。屈服延伸现象受碳氮含量、晶粒尺寸、合金元素、工艺参数和应变等因素影响,在明确屈服延伸现象发生的微观机理前提下,选择适当的成分和工艺参数能够在一定程度上减少或消除屈服延伸现象。关于屈服延伸的出现一般认为与晶体内间隙原子(碳原子和氮原子)的偏聚有关:经典理论认为屈服延伸现象是由于间隙原子在晶体内位错周围偏聚(也称柯氏气团),柯氏气团对位错的反复钉扎和解钉扎过程导致了屈服延伸;但是部分学者认为屈服延伸现象是偏聚在晶界上的间隙原子对位错运动的反复钉扎和解钉扎引起;也有部分学者认为是两者共同作用的结果。因此,关于出现屈服延伸现象的原因的争议在于间隙原子偏聚的位置,即偏聚于位错周围形成柯氏气团或偏聚于晶界。为了有效消除屈服延伸现象带来的危害,近些年来除研究屈服延伸现象发生的微观机理,即探究屈服延伸发生过程间隙原子偏聚的位置外,研究者们也探索了屈服延伸现象发生的微观力学行为。针对屈服延伸现象的研究引入了内耗、三维原子探针、聚焦离子束等先进技术手段,可实现对基体、晶界和位错等位置上各元素含量的表征,为进一步明确屈服延伸现象产生机制奠定基础;纳米压痕和扫描电镜原位拉伸等技术可用来研究屈服延伸发生过程的微观形变机理。其中采用纳米压痕技术研究屈服延伸现象时所得载荷-位移曲线上出现的晶界pop-in现象已被证实与屈服延伸现象存在联系,否定了较早认为初始pop-in现象与屈服延伸现象存在联系的观点。本文对屈服延伸的影响因素、机理和研究方法等方面进行了系统的综述,以期为低碳钢连续退火工业生产工艺中消除屈服延伸现象提供一定的线索,在降低生产成本、提高低碳钢表面成形质量方面有重要意义。  相似文献   

4.
预轧制变形电场时效对1420Al-Li合金组织与性能的影响   总被引:1,自引:0,他引:1  
对预轧制变形的1420Al-Li合金进行了电场时效处理,并研究了预轧制变形电场时效对Al-Li合金力学性能的影响,利用透射电镜观察和分析了合金的显微组织。试验结果表明,经预轧制变形的1420Al-Li合金在时效时,随时效时,随时效时间的延长或提高时效温度,使δ‘析出相尺寸增大;随预轧制变形量的增加,合金中位错密度提高,但预轧制对析出的δ‘相数量及尺寸没有明显的影响;预轧制变形电场时效可以显著提高合金的强度,采用适当的变形量及电场时效工艺可获得良好的强塑性配合。  相似文献   

5.
预变形对X90管线钢显微组织和力学性能的影响   总被引:1,自引:1,他引:0  
采用拉伸试验、冲击试验、光学显微镜(OM)、扫描电镜(SEM)、显微硬度测试仪等研究了0.5%~6%预拉伸变形对X90管线钢显微组织及力学性能的影响。结果表明:随着预拉伸变形量的增加,X90管线钢晶粒增大,位错塞积导致强度增加,均匀延伸率下降,呈现典型的加工硬化特点,抗拉强度的增幅要小于屈服强度,屈强比增大;随着变形量的增加冲击吸收功逐渐由291J减小至235J,冲击试样断口的韧窝减小,伴随第二相粒子析出;显微硬度中间层较边缘区增加少,预拉伸在6%时边缘显微硬度为325HV。X90管线钢的预拉伸在4%以内能保证管线钢的正常服役。  相似文献   

6.
采用正常时效、预时效+正常时效、双时效等多种时效工艺对热锻后的Aer Met100钢进行热处理,研究时效工艺对Aer Met100钢回火组织及力学性能的影响。结果表明:正常时效处理后Aer Met100钢的抗拉强度较高(1978 MPa),但是冲击韧性较低(冲击功74J);双时效处理后冲击韧性较高(冲击功102J),但是抗拉强度较低(1662 MPa);经过预时效+正常时效(510℃×30 min,+482℃×5 h)处理得到优良的强韧性能,其抗拉强度为1946 MPa,冲击功为104 J。强韧性提高的原因是:510℃预时效促进了C原子扩散,提高了膜状逆转奥氏体含量及其稳定性,有利于韧性的改善;同时,预时效保温时间短(≤30 min),析出相M2C未与基体脱离共格关系,析出的强化作用提高了强度。  相似文献   

7.
采用分离式霍普金森压杆(SHPB),在应变速率为2 000 s-1和5 500 s-1条件下,对不同热处理状态下的6061铝合金挤压试样进行动态压缩实验。采用维氏硬度(HV)、光学显微镜(OM)和透射电镜(TEM)对微观结构演变进行研究。实验结果表明:随着固溶温度增加,材料的动态力学性能不断增加,当固溶温度达到535℃达到稳定,此时基体中的二次相粒子基本溶解,同时未见发现晶粒尺寸明显长大现象。由于溶质原子溶入基体形成置换式固溶体,金属的晶体点阵发生畸变,固溶合金在高速冲击下,位错运动受到阻碍,位错密度增加,并形成位错墙。将535℃/1 h固溶后材料在180℃条件下进行人工时效,6061铝合金的动态流变应力随着时效时间增加而增加;当人工时效时间为8 h时,合金动态力学性能达峰值。时效初期形成了大量GP区,随着时效时间增加,GP区向β″转变,β″强化相的密度不断增加,并在8 h达到峰值。在高速冲击过程中,析出相有显著的钉扎作用,阻碍了位错的运动,导致大量的位错堆积,形成大量位错墙和位错胞。  相似文献   

8.
对X80级钢螺旋缝埋弧焊接钢管材料进行轴向拉伸预应变量与拉伸性能关系的试验研究。结果表明:随着预应变量的增加(≥1.5%),管体横向的屈服强度上升,而抗拉强度则无明显变化。  相似文献   

9.
目的 研究纳米多晶铝在不同温度与应变速率下的力学响应与塑性变形行为以及不同变形条件下的塑性力学行为。方法 通过ATOMSK软件构建了晶粒取向随机的纳米多晶铝模型,利用LAMMPS软件在300~700 K温度以及1×109、5×109、1×1010、1×1011 s-1应变速率下完成了纳米多晶铝的压缩模拟,借助后处理OVITO软件对模拟结果进行了分析。结果 随温度的升高,晶界原子所占比例增大,纳米多晶铝的弹性模量逐渐下降,在压缩过程中总位错密度随温度的升高而增大。随着应变速率的增大,材料硬化速率增加,纳米多晶铝表现出更高的屈服强度。当应变速率较低时,位错大量存在于小晶粒之中,且中央大晶粒相较于初始位置旋转了20°。当应变速率达到1×1011 s-1时,材料的硬化速率极大提高,且在晶粒内部出现了孪晶。在塑性变形过程中,1/6<112>(不全位错)的数量最多,在位错运动中占主导地位。结论 温度升高导致材料弹性模量降低,这主要是由...  相似文献   

10.
利用分子动力学模拟研究多晶Ti纳米柱的力学行为和位错反应机制,比较分析不同变形温度和承载条件对多晶Ti纳米柱应力应变关系及其塑性变形行为的影响。模拟结果显示,随着温度升高,多晶Ti纳米柱屈服强度降低,且在不同温度下,屈服强度所对应的应变量未发生明显变化。在整个变形过程中,主要的位错类型为Other和■类型位错,随着温度升高,位错总长度减小。多晶Ti纳米柱压缩变形与拉伸变形应变响应不对称,拉伸屈服强度略高于压缩屈服强度,晶界缺陷在拉伸变形中响应更加明显。  相似文献   

11.
目的 提升高强DP980双相钢的力学性能,优化连续退火工艺。方法 对高强汽车双相钢进行了连续退火处理,研究了连续退火均热温度、均热时间、过时效温度对冷轧双相钢显微组织、物相组织和力学性能的影响。结果 对于不同退火均热温度处理的双相钢,其组织均为铁素体(F)+马氏体(M),随着均热温度从715 ℃升高至865 ℃,残余奥氏体体积分数逐渐减小,抗拉强度、屈服强度先增后减,断后伸长率逐渐减小,在均热温度为815 ℃时,双相钢的抗拉强度和屈服强度达到最大值。随着均热时间从0.5 min延长至5 min,双相钢的晶粒尺寸逐渐增大,残余奥氏体体积分数先减后增,抗拉强度、屈服强度先增后减,断后伸长率先减后增,在均热时间为1.5 min时,抗拉强度和屈服强度达到最大值。随着过时效温度从245 ℃上升至395 ℃,双相钢中的马氏体体积分数逐渐减小,当过时效温度为395 ℃时,出现了贝氏体,奥氏体体积分数先增后减,抗拉强度、屈服强度逐渐减小,断后伸长率逐渐增大。结论 冷轧DP980双相钢适宜的连续退火工艺如下:均热温度为815 ℃、均热时间为3 min、过时效温度为295 ℃。此时双相钢具有较好的强塑性。  相似文献   

12.
对X70大变形管线钢进行应变量小于2.5%的单向预拉伸和预压缩应变处理,而后卸载,再次拉伸至断裂,研究单向预应变对管线钢拉伸性能的影响.结果表明:同种单向预应变时,不同预应变量下管线钢的弹性变形、屈服变形和形变强化特征基本相同,弹性应变总体上随预应变量的增大而增大;预拉伸后再次拉伸时,管线钢在应变ε小于0.5%即发生屈...  相似文献   

13.
采用X射线衍射(XRD)、透射电子显微镜(TEM)和差示扫描量热分析(DSC)研究了PAN纤维在预氧化过程的结构和热性能变化。结果表明:随着预氧化温度的升高,纤维的微晶尺寸增大,到220~230℃时达到最大,此后逐渐减小,原准晶结构逐渐被破坏。纤维的芳构化指数随预氧化温度的升高不断增大,PAN链状分子在逐渐演变成梯形环状分子结构,230℃和275℃是PAN原丝热稳定化的转折点。随着预氧化温度的升高,洋葱球非晶组织发生了结构演变。非晶化转变是从晶区边界开始,由外部向芯部逐步进行。纤维的环化度随着预氧化温度的升高表现为增大。在较低温度增加较快,随后增加变缓。230℃后,环化反应加剧,环化度迅速提高。  相似文献   

14.
预应变对Fe-Mn-Si记忆合金中应力诱发εM形态的影响   总被引:1,自引:0,他引:1  
利用拉伸试验方法测定了Fe-25%Mn-4.5%Si-1%Cr-2%Ni合金预应变对可恢复应变量的影响,并用X射线衍射分析方法考察了应力诱发ε马氏体(εM)体积分数随预应变量的变化关系.结果表明,当预应变大于5%而小于8%时,尽管应力诱发ε马氏体量仍然随预应变的增大而增多,而可恢复应变量却在预应变超过5%后随之迅速降低.利用透射电子显微镜对不同变形量试样中应力诱发εM形貌进行观察得知,预应变量由小及大,诱发出的εM形态变化很大,从而对记忆效应产生不同的影响.  相似文献   

15.
研究了不同热输入焊条电弧焊Q550钢接头的显微组织特征,及其在不同应变速率下的力学行为。结果表明,在热输入小于18 k J/cm时,随着热输入的增加接头熔合区针状铁素体的含量增多,热影响区粗晶区的晶粒尺寸增大。随着应变速率的提高接头断裂延伸率和抗拉强度均有不同程度的提高,断口的大韧窝深度变大,小韧窝区域减少。在高速拉伸过程中位错滑移的阻力增大,位错滑移速度远低于载荷增大速度,随着应变速率的提高屈服强度和抗拉强度都提高。随着热输入的增加接头熔合区针状铁素体的比率增大,这是其拉伸性能对应变速率的敏感性增大的主要原因。  相似文献   

16.
利用单轴屈服试验法研究了高强度10Cr Ni5Mo V钢的包申格效应。结果表明,随着拉伸预塑性应变量的增大,10Cr Ni5Mo V钢的包申格效应显著增大,在约0.9%预塑性应变量时趋于饱和,此时包申格效应因子为0.72;包申格效应的产生主要与位错运动和背应力有关,热处理均可显著减弱10Cr Ni5Mo V钢的包申格效应。  相似文献   

17.
利用万能电子拉伸试验机、光学显微镜、扫描电子显微镜、球差校正场发射透射电子显微镜等研究微量Ag元素对ZL114A铝合金力学性能和显微组织的影响。结果表明:随着Ag含量的增加,合金的抗拉强度、屈服强度提高,伸长率无明显变化;当Ag含量提高到0.55%(质量分数)时,ZL114A铝合金的峰时效抗拉强度从351MPa提高到369MPa,屈服强度从309MPa提高到328MPa,伸长率从2.36%提高到2.93%。ZL114A合金组织的α-Al枝晶和共晶Si无明显变化;Ag含量的提高,促进了GP区形核质点数量增加,引起了β″数量密度增加。在高角度环形暗场扫描透射(HAADF-STEM)模式下观察到Ag原子分布在β″相中,抑制了Mg原子和Si原子在β″相中扩散,导致β″相尺寸减小。  相似文献   

18.
通过屈服强度和冲击韧性测试、组织分析,研究了两种焊接热输入条件下道间温度对10CrNi5MoV钢气体保护焊接头力学性能的影响。结果表明,随着道间温度从40℃提高到300℃,焊接热输入为8 kJ/cm和18 kJ/cm的焊缝金属屈服强度分别从868 MPa和855 MPa单调下降至728 MPa和693 MPa,-50℃冲击韧性分别从70 J和69 J升高至117 J和72 J(道间温度分别为200℃和100℃),然后降低至67 J和43 J;焊缝金属的组织差异是不同道间温度下焊接接头力学性能不同的原因。随着道间温度从40℃提高到300℃,焊缝金属中马氏体组织逐渐消失,粒状贝氏体组织逐渐增多,针状铁素体组织比例先增加再减少,含量最高时的道间温度与冲击韧性峰值水平相一致。  相似文献   

19.
用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)观察应变时效处理前后X90高强管线钢的微观组织和冲击断口形貌,进行拉伸实验和Charpy冲击实验测定其拉伸性能和低温冲击性能,研究了这种钢的应变时效行为。结果表明,X90高强管线钢对应变时效比较敏感,敏感温度点为423.15 K。在高于敏感温度点的温度进行时效处理后材料失去连续屈服和强化特性,拉伸曲线由时效前的“Round House”拱顶型转变成为吕德斯型屈服曲线。对于确定的时效时间(tag=5 min),随时效温度Tag的提高X90钢的屈服强度Rp0.2、抗拉强度Rm和屈强比Rp0.2/Rm均呈现提高的趋势,均匀延伸率UEL、断裂应变εf、低温冲击吸收总功Ak、裂纹形成功Ai和裂纹扩展功Ap均呈现减小的趋势。时效处理前后这种钢的显微组织没有明显的差异,均为细小针状铁素体+多边形铁素体+板条贝氏体+M-A组元组成的复相组织。预应变和时效处理是管材发生应变时效的主要诱因,生产中可用柔性校平法取代刚性辊压校平法,多步渐进成型法取代一步螺旋成型法控制预应变量;另外,在保证防腐质量的前提下可降低防腐处理温度(小于423.15 K)以降低温度的影响。  相似文献   

20.
本文研究了动态应变时效(DSA)对18—8型奥氏体不锈钢静拉伸性能的影响。结果表明,(1),在 DSA 发生的温区,强度与温度关系曲线上出现流变应力平台(2),室温屈服强度随DSA 预处理温度升高和预应变量增加而提高,DSA 预处理具有比冷变形处理更佳的强化效果,且经873K 预处理后的室温强度达最大值,而塑性不下降.电镜观察结果报好地解释了这种 DSA强化的机理。同时表明,DSA 有可能作为一种强韧化工艺应用于生产实际。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号