首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以无水乙醇为反应溶液,采用室温共沉淀制备了低温单斜相BiPO4∶Tb3+绿色荧光纳米材料,并进行高温烧结处理。利用X-射线衍射(XRD)、透射电镜(TEM)和荧光光谱分别对所得样品的相结构、形貌以及发光性能进行研究。结果表明:通过高温烧结,样品没有发生晶型转变,仍然保持单斜相结构和纳米颗粒形貌。同时,Tb3+离子作为绿色发光中心进入到BiPO4的晶格中取代Bi 3+的格位,在370nm激发下,观察到Tb3+离子的特征跃迁(5D4→7FJ,J=6~3),其中以5D4→7F5跃迁发射(543nm)为主;并考察了BiPO4∶Tb3+纳米晶发光强度随Tb3+掺杂量的变化关系,发现其淬灭浓度高达20mol%。  相似文献   

2.
以六次甲基四胺(MSDS)为辅助剂,采用简单沉淀法合成四方晶系白钨矿结构的SrWO_4:Tb~(3+)微米球,考察掺杂不同含量铽、添加不同量辅助剂等因素对产物的光致发光性能的影响,利用XRD、SEM、FTIR、DRS和PL等对其结构和形貌及性能进行表征。在253nm的紫外光激发下,产物在545nm处有强的发射峰,相对水热法合成的SrWO_4:Tb~(3+)微米球有更好的发光强度。  相似文献   

3.
采用溶剂热法,以钨酸钠(Na_2WO_4·2H_2O)和氯化钙(CaCl_2)为原料,在V(醇)∶V(水)=3∶1,十二烷基磺酸钠(SDS)摩尔分数为1%,pH=7,180℃下,制备出了四方晶系结构的球形铕掺杂钨酸钙(CaWO_4∶Eu~(3+))纳米晶。通过X射线衍射(XRD)、扫描电镜(SEM)及荧光光谱(PL)对不同条件下制备出的产物的物相、形貌以及荧光性质进行表征,探讨了反应时间对产物形貌及发光性能的影响。结果表明,在不同反应时间下合成出了不同形貌的CaWO_4∶Eu~(3+)纳米晶。从荧光发射光谱可以看出,反应时间为24h的体系下合成出的球形CaWO_4∶Eu~(3+)纳米晶在393nm激发下于612nm处有强发射峰。由此,反应时间对CaWO_4∶Eu~(3+)纳米晶的物相和形貌及发光性能起到重要作用。  相似文献   

4.
利用提拉法生长了掺杂浓度为1.0at%~10.0at%的YVO_4:Ce~(3+)单晶,XRD分析显示Ce~(3+)的掺入没有改变晶体结构。晶体的激发和发射谱测试表明,在325 nm激发下YVO_4:Ce~(3+)发射出峰值在445 nm的蓝光和620 nm附近的红光。蓝光发光强度随Ce~(3+)浓度增加而增强,当浓度为8.0at%时达到最强,10.0at%时出现浓度淬灭,发光减弱;红光则随着Ce~(3+)浓度的增加而持续增强。通过实验分析推测蓝光来源于Ce~(3+)电子从激发态~2D_(3/2)到基态~2F_(5/2)的跃迁,而红光则是由于V~(4+)的电子能级跃迁而形成的。XPS测试显示部分Ce~(3+)失去电子被氧化成为Ce~(4+),失去的电子大部分被V~(5+)捕获形成V~(4+)。V~(4+)的d轨道分裂为三个轨道单态~2A_1、~2B_1、~2B_2和一个轨道简并态~2E等4个能级,基态为~2B_2。V~(4+)中电子通过能量传递、辐射跃迁和无辐射跃迁等过程,可以实现波长在620 nm附近的红光发射以及在620 nm激发下的451 nm蓝光上转换发光。实验证实了上转换发光为双光子过程。研究结果对紫外激发下YVO_4:Ce~(3+)红、蓝光发光行为提供了理论支撑。  相似文献   

5.
采用沉淀法合成了Eu3+不同掺杂浓度的YVO4:Eu3+纳米晶。利用X射线衍射和荧光光谱对材料的结构、发光性能进行了研究。XRD研究结果表明:在较低温度下合成的样品为四方相YVO4,纳米粒子的晶粒尺寸为7nm。发射光谱和激发光谱的研究表明:宽的激发带主要来自于Eu-O和V-O的电荷迁移带。发射峰来自于5D0-7FJ的跃迁。纳米YVO4:Eu3+的猝灭浓度为12%,荧光寿命随Eu3+离子的浓度的增加而缩短。  相似文献   

6.
采用高温熔化工艺制备出Tb3+掺杂硅酸盐玻璃,研究了高能辐照对该玻璃结构和发光性能的影响。结果表明,高能辐照后,Tb3+掺杂硅酸盐玻璃的结构发生变化,表现为两个方面:(1)是部分Tb3+离子被氧化为(Tb3+)+离子;(2)是玻璃体内产生大量色心。辐照对Tb3+掺杂硅酸盐玻璃的发光强度影响较大,发光强度随辐照剂量的增大而降低;然而,辐照对Tb3+掺杂硅酸盐玻璃的发光余辉影响较小,发光余辉基本不随辐照剂量的增加而变化。  相似文献   

7.
在不添加助剂的条件下,用微波共沉淀法法制备了铕、铽(Eu~(3+)、Tb~(3+))共掺杂的钨酸钙(CaWO_4)荧光粉。利用X射线衍射(XRD)、场发射扫描电子显微镜(SEM)、荧光光谱(PL)等表征手段,对荧光粉的物相组成、形貌和发光性能进行了分析。研究了Eu~(3+)、Tb~(3+)的掺杂比例及总掺杂量、反应温度及反应物浓度对荧光性能的影响。结果表明,Eu~(3+)、Tb~(3+)的掺杂摩尔比例、总掺杂量、温度以及反应物浓度对荧光粉的发光性能均能产生影响,其中在温度为80℃、反应物浓度为0.12mol/L且Eu~(3+)和Tb~(3+)总物质的量比金属离子总物质的量为13.1%时,得到的Eu~(3+)、Tb~(3+)共掺荧光粉在256nm激发下发射光谱色坐标为(0.270,0.236),位冷白光区。  相似文献   

8.
采用高温熔制工艺制备出Tb3+掺杂硅酸盐玻璃,研究了CeO2对Tb3+掺杂硅酸盐玻璃发光和耐辐照性能的影响。结果表明,Ce3+的激发带与Tb3+的激发带部分重叠,使激发Tb3+离子发光的能量减少,Tb3+离子在550nm的发光被淬灭;激发停止后,Ce3+/Ce4+减少了由陷阱中逃逸出的空穴和电子的直接复合而传递给Tb3+的激发能量,Tb3+发光余辉缩短。通过铈离子价态变化:Ce4++eCe3+,CeO2引入可以减少辐照对基础玻璃和Tb3+的损伤。综合考虑发光和辐照稳定性,Tb3+掺杂硅酸盐玻璃中CeO2的引入量应控制在0.4%~0.8%(质量分数)。  相似文献   

9.
为了研究不同水解条件下制备掺杂稀土离子发光材料的发光差异,通过溶胶-凝胶法以正硅酸乙酯和硼酸三甲酯为原料,制备了稀土离子Tb~(3+)掺杂的以B_2O_3-SiO_2为基质的发光材料。通过荧光激发光谱和发射光谱分析了不同酸碱催化条件下制备材料的发光情况,结果显示酸碱二步催化下制备的材料发光性能最好。利用FT-IR、XRD等对其结构进行分析,发现在300℃退火处理后有B_2O_3晶体生成,此时激发光谱蓝移;600℃退火处理后有Si—O—B键存在,此时发光性能最好,表明B掺杂SiO_2的网络有利于材料的发光。结合结构分析在酸碱条件下的水解机理,认为酸碱二步催化法能调节正硅酸乙酯和硼酸三甲酯的水解速率,更有利于B掺杂进SiO_2结构中,使制备的材料发光性能增强。  相似文献   

10.
采用高温固相法制备绿色荧光粉Y2GeO5∶Bi3+,Tb3+,利用X射线衍射仪、扫描电镜、激光粒度仪和光致发光光谱对其性能进行表征,并探讨Bi3+和Tb3+离子掺杂量对发光性能的影响。结果表明,掺杂Bi3+和Tb3+分别作为敏化剂和发光中心进入到Y2GeO5的晶格中,最佳掺杂量分别为1.2%、8%(摩尔分数);样品为类球形颗粒,其d50为6.39μm;峰值为314 nm的激发带由Bi3+离子、基质激发峰以及Tb3+的7F6→5D1复合而成;在314 nm波长激发下,发射光谱呈现峰值为373 nm宽带和位于430650 nm的多个锐利峰;Bi3+离子掺杂使5D4→7F5的发光强度提高3倍。  相似文献   

11.
采用高温固相法合成了绿色荧光粉Zn2Ca(PO4)2:Tb3+,测定了该荧光粉的XRD图谱、激发光谱及发射光谱。XRD图谱表明在高温还原气氛下合成了纯相的荧光粉Zn2Ca(PO4)2:Tb3+。该荧光粉的激发谱位于340~400nm。在紫外激发下主要发射峰位于490、544、584、622nm,对应于Tb3+的5D4→7F6、5D4→7F5、5D4→7F4、5D4→7F3的特征发射。考察了Tb3+的掺杂浓度对样品发光效率的影响,分析了Tb3+的544nm发射的自身浓度猝灭机理并探讨了敏化剂Ce3+离子的加入对荧光粉发光的影响。此绿色荧光粉Zn2Ca(PO4)2:Tb3+是一种很有潜力的适于UVLED管芯激发的发光粉。  相似文献   

12.
分别以水和乙醇、乙二醇的二元溶剂热法及热处理合成四方晶系CaWO_4∶Tb~(3+)球状、花生状微晶结构,利用XRD、SEM、FT-IR、DRS和PL等对其结构和形貌及性能进行表征。在不同溶剂中,反应温度为120℃,反应时间为24h的溶剂热条件下所得前驱物置于600℃煅烧后分别得到四方晶系CaWO_4∶Tb~(3+)微球、花生状微晶结构;用253nm的紫外光激发产物都发射出绿色光;花生状CaWO_4∶Tb~(3+)的荧光强度明显强于微球。  相似文献   

13.
以尿素为沉淀剂,柠檬酸为表面活性剂,通过水热法得到了非晶态的水合硝酸氧钇前驱体,进一步烧结处理后生成了立方相Y_2O_3纳米晶.利用X-射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、红外光谱(FTIR)和荧光光谱(PL)分别对所得样品的相结构、形貌粒度、表面结构以及发光性能进行研究.结果表明:当烧结温度从600℃升高到900℃,Y_2O_3∶Eu~(3+)纳米颗粒的结晶性增强,并实现了粒径调控,由13.0 nm增加至27.9 nm.随着Y_2O_3∶Eu~(3+)纳米颗粒尺寸的增加,比表面积减小会导致发光离子附近的表面晶格缺陷降低,同时纳米晶表面吸附水、硝酸根以及柠檬酸根等杂质离子逐渐被去除,减少了荧光猝灭中心,从而有利于增强荧光发射强度以及延长荧光寿命.  相似文献   

14.
采用溶胶-凝胶燃烧法制备了Gd_2(MoO_4)_3∶Sm~(3+),Tb~(3+)荧光粉,采用XRD、SEM和荧光光谱仪对样品的晶体结构、形貌及发光性能进行分析。结果表明:合成了正交晶系β′-Gd_2(MoO_4)_3,平均粒径为1μm左右。在254nm紫外光激发下,随着Sm~(3+)和Tb~(3+)掺杂浓度的变化,荧光粉颜色实现了红色→黄色→绿色的颜色可调,同时可观察到Tb~(3+)到Sm~(3+)的有效能量传递和Tb~(3+)的浓度淬灭现象。  相似文献   

15.
以聚乙二醇(PEG)为溶剂,用多元醇法制备了Tb~(3+)掺杂的纳米Gd_2O_3并在其表面包覆聚硅氧烷壳层,得到了Gd_2O_3∶Tb~(3+)/SiO_x纳米颗粒,研究了不同分子量(200、400、600)PEG对纳米颗粒尺寸及发光的影响。扫描电镜图像表明样品均为分散的球形,其中PEG200制备出的纳米颗粒具有明显核壳结构。马尔文激光粒度仪测试结果表明随着PEG分子量的增大,包覆前的颗粒粒径分别为78、21和28nm,包覆后的颗粒粒径分别为140、32和38nm;发射光谱表明:与PEG400和PEG600相比,PEG200合成出的纳米颗粒的荧光性能最佳。  相似文献   

16.
本文采用PECVD方法在石英衬底上生长不同剂量比的氮化硅薄膜SiNx,并利用离子注入方法在SiNx中注入Tb3+离子。然后通过在SiNx薄膜表面沉积银岛膜,研究了银表面等离激元和SiNx:Tb3+发光的相互作用。研究发现,银岛膜的存在降低了SiNx:Tb3+发光荧光寿命,而且SiNx:Tb3+发光荧光寿命随着银岛膜厚度的增加而减小。而氮化硅薄膜中的硅纳米晶也会影响Tb3+的光模密度,并对SiNx:Tb3+发光荧光寿命产生影响。  相似文献   

17.
采用燃烧法按钙镁比x/y分别为10/0、9/1、8/2、7/3、6/4、5/5合成了CaxMgy(VO4)n∶Eu3+荧光粉。利用XRD测试了样品的相组成,结果表明,当x/y>8/2时样品以Ca3(VO4)2为主晶相,当x/y=8/2时样品中开始出现Ca5Mg4(VO4)6相。利用荧光分光光度计测试了样品的荧光光谱,结果表明,当x/y>8/2时样品表现为615nm的锐线发射,当x/y<8/2时样品表现为615nm的锐线发射和400~600nm之间的宽带发射,发光颜色随x/y从10/0到5/5由红色向黄绿色变化。  相似文献   

18.
以稀土氧化物、硝酸铝为原料,采用溶胶-凝胶法合成了Yb3+、Tm3+共掺的钇铝石榴石(Y3Al5O12,YAG)纳米晶粉体。采用X射线衍射(XRD)确定了1200℃煅烧后的晶体粉为纯YAG结构,无杂质相,晶体尺寸约为90nm;该粉体在波长为980nm的半导体激光器激发下发射出中心波长为487nm的蓝色上转换荧光,对应于Tm3+离子的1G4→3H6的跃迁。发光强度和激发功率关系的研究揭示了其为双光子过程,Tm3+的激发态吸收及Tm3+、Yb3+间的交叉驰豫型能量传递和是该上转换发光的主要机制。  相似文献   

19.
制备了不同Zr/Ti比的CaTi1-xZrxO3∶Pr3+(x=0~0.07)系列红色发光材料。采用X射线衍射检测了样品结构,测量了样品的激发光谱、发射光谱和反射光谱特性,讨论了B位Zr掺杂对CaTiO3∶Pr3+发光性能的影响。结果表明,Zr掺杂使样品在612nm处的红光发射强度大大提高。当x=0.025时,样品发光强度达到最强,是CaTiO3∶Pr3+发光强度的299%。发光强度的提高是由于Zr的加入使基质中电荷转移态位置处于导带和Pr3+的4f5d能级之间,使能量传递通道得到增加而导致的。  相似文献   

20.
为分析高硅氧玻璃中Al~(3+)对Ce~(3+)发光性能的影响,提高稀土掺杂高硅氧玻璃的发光效率,从理论与实验两个方面出发分析了高硅氧玻璃制备过程中Al~(3+)浓度对Ce~(3+)掺杂量的影响,并结合高硅氧玻璃吸收与发射光谱变化研究了Al~(3+)浓度对Ce~(3+)发光性能的影响机理。结果表明,纳米多孔玻璃孔径为7.74nm时,溶液中少量共掺Al~(3+)可明显降低Ce~(3+)掺杂量,减少稀土离子浓度猝灭现象,提高Ce~(3+)发光强度;但大幅增加Al~(3+)浓度时,Ce~(3+)掺杂量与发光强度基本不变。这是由于纳米多孔玻璃孔径较大时,其表面吸附的稀土离子含量远小于孔径中扩散的稀土离子含量,故若想通过增加Al~(3+)浓度来提高Ce~(3+)发光强度,则需要增大纳米多孔玻璃的比表面积或表面羟基浓度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号