首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron transfer dissociation (ETD) is a recently introduced mass spectrometric technique which has proven to be an excellent tool for the elucidation of labile post-translational modifications such as phosphorylation and O-GlcNAcylation of serine and threonine residues. However, unlike collision induced dissociation (CID), which has been studied for decades, the intricacies of ETD-based fragmentation have not yet been firmly established or systematically addressed. In this analysis, we have systematically compared the CID and ETD fragmentation patterns for the large majority of the peptides that do not contain such labile modifications. Using a standard 48 protein mix, we were able to measure false-positive rates for the experiments and also assess a large number of peptides for a detailed comparison of CID and ETD fragmentation pattern. Analysis of approximately 19,000 peptides derived from both standard proteins and complex protein samples revealed that (i) CID identified 50% more peptides than ETD; (ii) ETD resulted in approximately 20% increase in amino acid sequence coverage over CID; and (iii) combining CID and ETD fragmentation increased the sequence coverage for an average tryptic peptide to 92%. Interestingly, our analysis revealed that nearly 60% of all ETD-identified peptides carried two positive charges, which is in sharp contrast to what has been generally accepted. We also present a novel strategy for automatic validation of peptide assignments based on identification of a peptide by consecutive CID and ETD fragmentation in an alternating mode.  相似文献   

2.
Ion-ion reactions between a variety of peptide cations (doubly and triply charged) and SO2 anions have been studied in a 3-D quadrupole ion trap, resulting in proton and electron transfer. Electron transfer dissociation (ETD) gives many c- and z-type fragments, resulting in extensive sequence coverage in the case of triply protonated peptides with SO2*-. For triply charged neurotensin, in which a direct comparison can be made between 3-D and linear ion trap results, abundances of ETD fragments relative to one another appear to be similar. Reactions of doubly protonated peptides with SO2*- give much less structural information from ETD than triply protonated peptides. Collision-induced dissociation (CID) of singly charged ions formed in reactions with SO2*- shows a combination of proton and electron transfer products. CID of the singly charged species gives more structural information than ETD of the doubly protonated peptide, but not as much information as ETD of the triply protonated peptide.  相似文献   

3.
A novel MS/MS-based analysis strategy using isotopomer labels, referred to as "tandem mass tags" (TMTs), for the accurate quantification of peptides and proteins is described. The new tags are designed to ensure that identical peptides labeled with different TMTs exactly comigrate in all separations. The tags require novel methods of quantification analysis using tandem mass spectrometry. The new tags and analysis methods allow peptides from different samples to be identified by their relative abundance with greater ease and accuracy than other methods. The new TMTs permit simultaneous determination of both the identity and relative abundances of peptide pairs using a collision induced dissociation (CID)-based analysis method. Relative abundance measurements made in the MS/MS mode using the new tags are accurate and sensitive. Compared to MS-mode measurements, a very high signal-to-noise ratio is achieved with MS/MS based detection. The new tags should be applicable to a wide variety of peptide isolation methods.  相似文献   

4.
Miniaturized ultra high field asymmetric waveform ion mobility spectrometry (FAIMS) is used for the selective transmission of differential mobility-selected ions prior to in-source collision-induced dissociation (CID) and time-of-flight mass spectrometry (TOFMS) analysis. The FAIMS-in-source collision induced dissociation-TOFMS (FISCID-MS) method requires only minor modification of the ion source region of the mass spectrometer and is shown to significantly enhance analyte detection in complex mixtures. Improved mass measurement accuracy and simplified product ion mass spectra were observed following FAIMS preselection and subsequent in-source CID of ions derived from pharmaceutical excipients, sufficiently close in m/z (17.7 ppm mass difference) that they could not be resolved by TOFMS alone. The FISCID-MS approach is also demonstrated for the qualitative and quantitative analysis of mixtures of peptides with FAIMS used to filter out unrelated precursor ions thereby simplifying the resulting product ion mass spectra. Liquid chromatography combined with FISCID-MS was applied to the analysis of coeluting model peptides and tryptic peptides derived from human plasma proteins, allowing precursor ion selection and CID to yield product ion data suitable for peptide identification via database searching. The potential of FISCID-MS for the quantitative determination of a model peptide spiked into human plasma in the range of 0.45-9.0 μg/mL is demonstrated, showing good reproducibility (%RSD < 14.6%) and linearity (R(2) > 0.99).  相似文献   

5.
Due to the complexity of proteome samples, only a portion of peptides and thus proteins can be identified in a single LC-MS/MS analysis in current shotgun proteomics methodologies. It has been shown that replicate runs can be used to improve the comprehensiveness of the proteome analysis; however, high-intensity peptides tend to be analyzed repeatedly in different runs, thus reducing the chance of identifying low-intensity peptides. In contrast to commonly used online ESI-MS, offline MALDI decouples the separation from MS acquisition, thus allowing in-depth selection for specific precursor ions. Accordingly, we extended a strategy for offline LC-MALDI MS/MS analysis using a precursor ion exclusion list consisting of all identified peptides in preceding runs. The exclusion list eliminated redundant MS/MS acquisitions in subsequent runs, thus reducing MALDI sample depletion and allowing identification of a larger number of peptide identifications in the cumulative dataset. In the analysis of the digest of an Escherichia coli lysate, the exclusion list strategy resulted in a 25% increase in the number of unique peptide identifications in the second run, in contrast to simply pooling MS/MS data from two replicate runs. To reduce the increased LC analysis time for repeat runs, a four-column multiplexed LC system was developed to carry out separation simultaneously. The multiplexed LC-MALDI MS provides a high-throughput platform to utilize the exclusion list strategy in proteome analysis.  相似文献   

6.
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is a central tool for proteomic analysis, yet the singly protonated tryptic peptide ions produced by MALDI are significantly more difficult to dissociate for tandem mass spectrometry (MS/MS) than the corresponding multiply protonated ions. In order to overcome this limitation, current proteomic approaches using MALDI-MS/MS involve high-energy collision-induced dissociation (CID). Unfortunately, the use of high-energy CID complicates product ion spectra with a significant proportion of irrelevant fragments while also reducing mass accuracy and mass resolution. In order to address the lack of a high-resolution, high mass accuracy MALDI-MS/MS platform for proteomics, Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and a recently developed MS/MS technique termed CIRCA (for combination of infrared and collisional activation) have been applied to proteomic analysis. Here, CIRCA is shown to be suitable for dissociating singly protonated tryptic peptides, providing greater sequence coverage than either CID or infrared multiphoton dissociation (IRMPD) alone. Furthermore, the CIRCA fragmentation spectra are of sufficient quality to allow protein identification based on the MS/MS spectra alone or in concert with the peptide mass fingerprint (PMF). This is accomplished without compromising mass accuracy or mass resolution. As a result, CIRCA serves to enable MALDI-FTICR-MS/MS for high-performance proteomics experiments.  相似文献   

7.
We have previously demonstrated the suitability of data-dependent electron capture dissociation (ECD) for incorporation into proteomic strategies. The ability to directly determine sites of phosphorylation is a major advantage of electron capture dissociation; however, the low stoichiometry associated with phosphorylation means that phosphopeptides are often overlooked in data-dependent ECD analyses. In contrast, collision-induced dissociation (CID) tends to result in loss of the labile phosphate group, often at the expense of sequence fragments. Here, we demonstrate a novel strategy for the characterization of phosphoproteins which exploits the neutral loss feature of CID such that focused ECD of phosphopeptides is achieved. Peptides eluting from a liquid chromatograph are first subjected to CID, and if a neutral loss of 98 Da (corresponding to H3PO4) from the precursor is observed, ECD of that same precursor is performed; i.e., the method comprises neutral loss triggered ECD (NL-ECD-MS/MS). The method was applied to tryptic digests of beta-casein and alpha-casein. For alpha-casein, four sites of phosphorylation were identified with NL-ECD-MS/MS compared with a single site identified by ECD-MS/MS. The method also resulted in ECD of a doubly phosphorylated peptide. A further benefit of the method is that overall protein sequence coverage is improved. Sequence information from nonphosphorylated peptides is obtained as a result of the CID step.  相似文献   

8.
Covalent disulfide bond linkage in a protein represents an important challenge for mass spectrometry (MS)-based top-down protein structure analysis as it reduces the backbone cleavage efficiency for MS/MS dissociation. This study presents a strategy for solving this critical issue via integrating electrochemistry (EC) online with a top-down MS approach. In this approach, proteins undergo electrolytic reduction in an electrochemical cell to break disulfide bonds and then undergo online ionization into gaseous ions for analysis by electron-capture dissociation (ECD) and collision-induced dissociation (CID). The electrochemical reduction of proteins allows one to remove disulfide bond constraints and also leads to increased charge numbers of the resulting protein ions. As a result, sequence coverage was significantly enhanced, as exemplified by β-lactoglobulin A (24 vs 75 backbone cleavages before and after electrolytic reduction, respectively) and lysozyme (5 vs 66 backbone cleavages before and after electrolytic reduction, respectively). This methodology is fast and does not need chemical reductants, which would have an important impact in high-throughput proteomics research.  相似文献   

9.
Electron transfer dissociation (ETD) is an alternative peptide dissociation method developed in recent years. Compared with the traditional collision induced dissociation (CID) b and y ion formation, ETD generates c and z ions and the backbone cleavage is believed to be less selective. We have reported previously the application of a statistical data mining strategy, K-means clustering, to discover fragmentation patterns for CID, and here we report application of this approach to ETD spectra. We use ETD data sets from digestions with three different proteases. Data analysis shows that selective cleavages do exist for ETD, with the fragmentation patterns affected by protease, charge states, and amino acid residue compositions. It is also noticed that the c(n-1) ion, corresponding to loss of the C-terminal amino acid residue, is statistically strong regardless of the residue at the C-terminus of the peptide, which suggests that the peptide gas phase conformation plays an important role in the dissociation pathways. These patterns provide a basis for mechanism elucidation, spectral prediction, and improvement of ETD peptide identification algorithms.  相似文献   

10.
This work focuses on the development of a multidimensional electrokinetic-based separation/concentration platform coupled with electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) for achieving the high resolution and ultrasensitive analysis of complex protein/peptide mixtures. A microdialysis junction is employed as the interface for on-line combination of capillary isoelectric focusing (CIEF) with transient capillary isotachophoresis/zone electrophoresis (CITP/CZE) in an integrated platform. Besides the excellent resolving power afforded by both CIEF and CZE separations, the electrokinetic focusing/stacking effects of CIEF and CITP greatly enhance the dynamic range and detection sensitivity of MS for protein identification. The constructed multidimensional separation/concentration platform is demonstrated for the analysis of Shewanella oneidensis proteome, which has considerable implications toward the bioremediation of environmental pollutants. The electrokinetic-based platform offers the overall peak capacity comparable to those obtained using multidimensional chromatography systems, but with a much shorter run time and no need for column regeneration. Most importantly, a total of 1174 unique proteins, corresponding to 26.5% proteome coverage, are identified from the cytosolic fraction of S. oneidensis, while requiring <500 ng of proteolytic digest loaded in the CIEF capillary. The ultrasensitive capabilities of electrokinetic-based proteome approach are attributed to the concentration effect in CIEF, the electrokinetic stacking of CITP, the nanoscale peak volume in CZE, the "accurate mass tag" strategy for protein/peptide identification, and the high-sensitivity, high-resolution, and high-mass measurement accuracy of FTICR-MS.  相似文献   

11.
A new matrix-assisted laser desorption/ionization (MALDI) time-of-flight/time-of-flight (TOF/TOF) high-resolution tandem mass spectrometer is described for sequencing peptides. This instrument combines the advantages of high sensitivity for peptide analysis associated with MALDI and comprehensive fragmentation information provided by high-energy collision-induced dissociation (CID). Unlike the postsource decay technique that is widely used with MALDI-TOF instruments and typically combines as many as 10 separate spectra of different mass regions, this instrument allows complete fragment ion spectra to be obtained in a single acquisition at a fixed reflectron voltage. To achieve optimum resolution and focusing over the whole mass range, it may be desirable to acquire and combine three separate sections. Different combinations of MALDI matrix and collision gas determine the amount of internal energy deposited by the MALDI process and the CID process, which provide control over the extent and nature of the fragment ions observed. Examples of peptide sequencing are presented that identify sequence-dependent features and demonstrate the value of modifying the ionization and collision conditions to optimize the spectral information.  相似文献   

12.
Chen SH  Hsu JL  Lin FS 《Analytical chemistry》2008,80(13):5251-5259
Fluorescence-based tagging in proteomics is useful in tracking and quantifying target proteins during sample preparation or chromatographic processes. In this study, we report a novel cysteinyl tagging method using a popular fluorophore, fluorescein derivative. Such visible dyes were shown to have multiple unique characteristics, including a unique reporter ion containing the dye moiety caused by collision-induced dissociation (CID) and high affinity toward multicarboxylate functional groups, which could be useful for enhanced selectivity in MS-based proteomics. We used sulfhydryl-reactive 5-iodoacetamidofluorescein to target cysteinyl residues on the intact protein of ovalbumin and bovine serum albumin as well as proteins in MCF-7 cells. After trypsin digestion, the digests were analyzed by nanoLC-ESI-Q-TOF or MALDI-TOF. The resulting MS spectra of tryptic fragments were similar to those of unlabeled or iodoacetamide-derivatized proteins, and the MS/MS fragmentation of all fluorescein-tagged peptides was readily interpretable with intact label. Thus, fluorescein-derivatized proteins can be identified by automatic mass mapping or peptide sequencing with high confidence. It is notable that, in MS/MS mode, a strong reporter ion (m/z 422) containing the fluorescein moiety was readily detected and was believed to derive from the immonium fragment of fluorescein-labeled cysteine residues, f C (m/z 463), under CID conditions. Using a precursor scan of the reporter ion, a cysteinyl protein, ovomucoid, was identified to be present in the ovalbumin sample as an impurity. The fluorescein derivatives were further shown to have high affinities toward metal-chelating materials that have iminodiacetic acid functional groups either with or without the presence of bound metal ions. When coupling with stable isotope dimethyl labeling, fluorescein-tagged peptides could be selectively enriched, identified, and quantified. In view of its popularity, visible tracking, and unique characteristics for developing selective methods, fluorescein tagging holds great promises for targeting proteomics.  相似文献   

13.
Ultrasensitive nanoscale proteomics approaches for characterizing proteins from complex proteomic samples of <50 ng of total mass are described. Protein identifications from 0.5 pg of whole proteome extracts were enabled by ultrahigh sensitivity (<75 zmol for individual proteins) achieved using high-efficiency (peak capacities of approximately 10(3)) 15-microm-i.d. capillary liquid chromatography separations (i.e., using nanoLC, approximately 20 nL/min mobile-phase flow rate at the optimal linear velocity of approximately 0.2 cm/s) coupled on-line with a micro-solid-phase sample extraction and a nanoscale electrospray ionization interface to a 11.4-T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer (MS). Proteome measurement coverage improved as sample size was increased from as little as 0.5 pg of sample. It was found that a 2.5-ng sample provided 14% coverage of all annotated open reading frames for the microorganism Deinococcus radiodurans, consistent with previous results for a specific culture condition. The estimated detection dynamic range for detected proteins was 10(5)-10(6). An improved accurate mass and LC elution time two-dimensional data analysis methodology, used to both speed and increase the confidence of peptide/protein identifications, enabled identification of 872 proteins/run from a single 3-h nanoLC/FTICR MS analysis. The low-zeptomole-level sensitivity provides a basis for extending proteomics studies to smaller cell populations and potentially to a single mammalian cell. Application with ion trap MS/MS instrumentation allowed protein identification from 50 pg (total mass) of proteomic samples (i.e., approximately 100 times larger than FTICR MS), corresponding to a sensitivity of approximately 7 amol for individual proteins. Compared with single-stage FTICR measurements, ion trap MS/MS provided a much lower proteome measurement coverage and dynamic range for a given analysis time and sample quantity.  相似文献   

14.
We estimated the reproducibility of tandem mass spectra for the widely used collision-induced dissociation (CID) of peptide ions. Using the Pearson correlation coefficient as a measure of spectral similarity, we found that the within-experiment reproducibility of fragment ion intensities is very high (about 0.85). However, across different experiments and instrument types/setups, the correlation decreases by more than 15% (to about 0.70). We further investigated the accuracy of current predictors of peptide fragmentation spectra and found that they are more accurate than the ad-hoc models generally used by search engines (e.g., SEQUEST) and, surprisingly, approaching the empirical upper limit set by the average across-experiment spectral reproducibility (especially for charge +1 and charge +2 precursor ions). These results provide evidence that, in terms of accuracy of modeling, predicted peptide fragmentation spectra provide a viable alternative to spectral libraries for peptide identification, with a higher coverage of peptides and lower storage requirements. Furthermore, using five data sets of proteome digests by two different proteases, we find that PeptideART (a data-driven machine learning approach) is generally more accurate than MassAnalyzer (an approach based on a kinetic model for peptide fragmentation) in predicting fragmentation spectra but that both models are significantly more accurate than the ad-hoc models.  相似文献   

15.
Cation transmission/electron-transfer reagent anion storage mode electron-transfer ion/ion reactions and beam-type collisional activation of the polypeptide ions are performed in rapid succession in the high-pressure collision cell (Q2) of a quadrupole/time-of-flight tandem mass spectrometer (QqTOF), where the electron-transfer reagent anions are accumulated. Duty cycles for both electron-transfer dissociation (ETD) and collision-induced dissociation (CID) experiments are improved relative to ion trapping approaches since there are no discrete ion storage and reaction steps for ETD experiments and no discrete ion storage step and frequency tuning for CID experiments. For this technique, moderately high resolution and mass accuracy are also obtained due to mass analysis via the TOF analyzer. This relatively simple approach has been demonstrated with a triply charged tryptic peptide, a triply charged tryptic phosphopeptide, and a triply charged tryptic N-linked glycopeptide. For the tryptic peptide, the sequence is identified with more certainty than would be available from a single method alone due to the complementary information provided by these two dissociation methods. Because of the complementary information derived from both ETD and CID dissociation methods, peptide sequence and post-translational modification (PTM) sites for the phosphopeptide are identified. This combined ETD and CID approach is particularly useful for characterizing glycopeptides because ETD generates information about both peptide sequence and locations of the glycosylation sites, whereas CID provides information about the glycan structure.  相似文献   

16.
We describe the first implementation of negative electron-transfer dissociation (NETD) on a hybrid ion trap-orbitrap mass spectrometer and its application to high-throughput sequencing of peptide anions. NETD, coupled with high pH separations, negative electrospray ionization (ESI), and an NETD compatible version of OMSSA, is part of a complete workflow that includes the formation, interrogation, and sequencing of peptide anions. Together these interlocking pieces facilitated the identification of more than 2000 unique peptides from Saccharomyces cerevisiae representing the most comprehensive analysis of peptide anions by tandem mass spectrometry to date. The same S. cerevisiae samples were interrogated using traditional, positive modes of peptide LC-MS/MS analysis (e.g., acidic LC separations, positive ESI, and collision activated dissociation), and the resulting peptide identifications of the different workflows were compared. Due to a decreased flux of peptide anions and a tendency to produce lowly charged precursors, the NETD-based LC-MS/MS workflow was not as sensitive as the positive mode methods. However, the use of NETD readily permits access to underrepresented acidic portions of the proteome by identifying peptides that tend to have lower pI values. As such, NETD improves sequence coverage, filling out the acidic portions of proteins that are often overlooked by the other methods.  相似文献   

17.
The feasibility of obtaining the collision-induced dissociation (CID) spectra of multiply charged peptide ions produced by electrospray ionization in a simple and inexpensive single-quadrupole mass spectrometer is demonstrated. Collisional activation was carried out in the high-pressure region between the capillary exit and the skimmer entrance to the mass analyzer. The CID of multiply charged peptide ions is very efficient, and the observed fragment ion intensities are typically 1-5% of the parent ion intensity prior to CID. About 70 pmol of the peptide is consumed in obtaining each CID spectrum. Spectra obtained by CID of multiply charged ions from bradykinin, angiotensin II, two peptides with features similar to tryptic peptides, and a synthetic analogue of a component of TGF-alpha containing two disulfide bonds are shown. The influence of the primary structure of the peptide on the observed fragmentation pathways is discussed. Although the present single-quadrupole configuration is simple and effective, the inability to choose a particular parent ion for collisional activation makes it less powerful than the triple-quadrupole configuration for mixtures of peptides and peptide samples that yield more than one charge state in the normal mass spectrum. However, it has the potential for inexpensively obtaining sequence information of proteins at high sensitivity by analyzing the pure tryptic peptides obtained by on-line or off-line chromatographic separation of tryptic digests.  相似文献   

18.
Proline-rich proteins (PRPs), including collagens, complement 1q, and salivary PRPs, are unusually difficult to sequence by mass spectrometry, due to the high efficiency of cleavage at the amide bond on the N-terminal of proline residues and the consequently low relative abundance of fragment arising from cleavages at other amide bonds. To fully characterize these proteins by mass spectrometry, specialized approaches to fragmentation are needed for the peptides with high proline content. Our work reported herein focused on the analysis of the set of peptides derived by tryptic cleavage of the salivary protein PRP-3. Two methods of fragmentation were compared: Collision-induced dissociation (CID) and electron capture dissociation (ECD). The data obtained demonstrated that ECD spectra of peptides containing more than 30% proline residues are simpler and easier to interpret than are CID spectra of those peptides. Factors that limit the two methods of fragmentation include the complexity of information contained in the CID spectra and the low efficiency of ECD processes. A complementary approach using both decomposition methods provides more complete and interpretable sequence information and yielded >93% sequence coverage for the 11-kDa PRP-3 isolated from human saliva.  相似文献   

19.
Electron-transfer dissociation (ETD) has recently been introduced as a fragmentation method for peptide and protein analysis. Unlike collisionally induced dissociation (CID), fragmentation by ETD occurs randomly along the peptide backbone. With the use of the sequences determined from the protein termini and the parent protein mass, intact proteins can be unambiguously identified. Because of the fast kinetics of these reactions, top-down proteomics can be performed using ETD in a linear ion trap mass spectrometer on a chromatographic time scale. Here we demonstrate the utility of ETD in high-throughput top-down proteomics using soluble extracts of E. coli. Development of a multidimensional fractionation platform, as well as a custom algorithm and scoring scheme specifically designed for this type of data, is described. The analysis resulted in the robust identification of 322 different protein forms representing 174 proteins, comprising one of the most comprehensive data sets assembled on intact proteins to date.  相似文献   

20.
A general approach that combines mass spectrometry (MS), collision-induced dissociation (CID), ion mobility (IM), and MS for top-down proteomics is described, denoted as MS-CID-IM-MS. Using this approach, CID product ions are dispersed in two dimensions, specifically size-to-charge (IM) and mass-to-charge (MS), and the resulting 2D data display greatly facilitates peptide/protein mass mapping, amino acid sequence analysis, and determination of site-specific protein modifications. Also, this approach alleviates some of the inherent limitations of top-down proteomics, viz. the limitations in dynamic range for fragment ion abundances owing to the number of fragmentation channels available to large ionic systems as well as the resulting spectral congestion. For large peptides such as melittin (2845 Da), CID of the [M + 3H](3+), [M + 4H](4+), and [M + 5H](5+) ions yields amino acid sequence coverage of 42.3%, 38.5%, and 7.7%, respectively, whereas the hybrid MS-CID-IM-MS approach yields amino acid sequence coverages of 84.6%, 65.4%, and 69.2%, respectively. For large biomolecules such as ubiquitin (8565 Da), the amino acid sequence coverage increases from 39% to 76%. The MS-CID-IM-MS top-down approach allows for greater depth of information by allowing the assignment and study of internal fragment ions. Lastly, analysis of the methyl esterification of ubiquitin and single point mutation of human iron sulfur cluster U (HISCU, 14.3 kDa) demonstrates the ability of MS-CID-IM-MS to rapidly identify the presence and sites of modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号