首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
巩甘雷  唐骥  茹红强  张宁  孙旭东 《铸造》2004,53(3):207-210
以棕刚玉、Al、Si、Al2O3为原料、采用一步工艺合成了Sialon/刚玉复合材料.研究了一步合成工艺条件下添加剂对复合材料组织、性能以及复合材料中N含量的影响.结果表明,当氮化温度超过1330℃,氮化时间超过8h后,添加Si3N4/AlN的材料中N含量基本上达到饱和值,添加Si3N4/AlN可以降低Sialon相的合成温度;1230~1280℃是一个重要的前期氮化温度,添加Si3N4/AlN的材料在该温度可完成整个氮化反应的94.24%,早期对Al、Si的充分氮化有利于Sialon相的生成和晶形完整发育.  相似文献   

2.
碳热还原氮化法合成MgAlON   总被引:1,自引:0,他引:1  
利用重力计,比重仪,SEM,XRD,碳素分析仪,XFS和氧氮分析仪检测了不同加热条件下碳热还原氮化法合成镁阿隆(MgAlON)的密度、微观结构、相组成以及Mg,Al,O,N和C含量,讨论了碳热还原氮化法合成MgAlON的机理.结果表明,加热温度为1100℃时,原料中所有的MgO反应生成镁铝尖晶石(MgAl_2O_(4ss));当加热温度高于1300℃时,发生碳热还原氮化反应,N固溶于MgAl_2O_(4ss)生成MgAlON;由于碳热还原氮化反应不断消耗Al_2O_3,加热温度为1600℃时试样中Al_2O_3大颗粒的尺寸较加热温度为1500℃时的小;随着石墨和Al_2O_3在反应过程被完全消耗,在1650℃下加热获得了单相MgAlON.另外,碳热还原氮化反应中N原子向尖晶石结构MgAl_2O_(4ss)中固溶时导致晶格畸变而使原子间隙扩大,从而Al在MgAlON的固溶量高于其在MgAl_2O_(4ss)中的固溶量.由于碳热还原氮化反应过程产生气体及高温下Mg蒸汽分压较高,即使加热温度提高至1800℃,试样中仍然存在大量密闭气孔.  相似文献   

3.
采用在合金熔体中通入氮气的方法在镁铝合金中原位生成了AlN颗粒增强相。合金微观组织的研究分析表明,AlN相不仅可通过间接氮化反应(3Mg+N2→Mg3N2,Mg3N2+2Al → 2AlN+3Mg)形成,而且可在熔体中由Al和N2直接反应形成。控制氮化反应温度在750℃,且合金熔体凝固后的快速重熔可在合金中获得分布均匀的AlN相。  相似文献   

4.
以刚玉和金属铝为原料,在氮气气氛下通过原位反应合成了Al/AlN结合刚玉基耐火材料.当金属铝含量为14%、氮化条件为1100℃,3 h时,所合成材料有较好的物理性能.通过物相与显微结构分析,发现有大量呈晶须和颗粒状的AlN生成,并残存部分金属铝.这种复相结合系统赋予材料优异的力学性能.对材料应用性能研究发现,材料的水化趋势很小,具有很好的抗热冲击性能,而Al和AlN的氧化具有保护性氧化的特征.  相似文献   

5.
采用在合金熔体中通入氮气的方法在镁铝合金中原位生成了Al N颗粒增强相。合金微观组织的研究分析表明,Al N相不仅可通过间接氮化反应(3Mg+N_2→Mg_3N_2,Mg_3N_2+2Al→2AlN+3Mg)形成,而且可在熔体中由Al和N2直接反应形成。控制氮化反应温度在750℃,且合金熔体凝固后的快速重熔可在合金中获得分布均匀的Al N相。  相似文献   

6.
采用Si_3N_4、AlN和Li_2CO_3为原料,以Y_2O_3、CaF_2为添加剂,利用高温氮化反应合成得到不同阳离子掺杂的α-Sialon.并借助XRD和SEM等测试手段,研究了合成温度(1450, 1500, 1600, 1700 ℃)、添加剂(5.0%CaF_2、5.0%Y_2O_3、2.5%CaF_2+2.5%Y_2O_3,质量分数, 下同)等因素对试样反应产物的物相组成、晶面间距及晶粒微观形貌的影响.结果表明:采用Si_3N_4、AlN和Li_2CO_3等为原料,以(2.5%Y_2O_3+2.5%CaF_2)作为复合添加剂,利用高温氮化法在0.9 MPa的流动氮气中1700 ℃下保温3 h合成得到了不同阳离子掺杂的α-Sialon,在显微形貌中可见到长柱状晶粒.提高反应温度能够促进α-Sialon的合成;不同添加剂的试样由于阳离子的离子半径以及Al、O固溶量的不同导致形成的α-Sialon晶面间距不同.  相似文献   

7.
AlN/Y2O3陶瓷燃烧合成研究   总被引:1,自引:0,他引:1  
采用燃烧合成工艺,在超高压氮气下,制备了具有较高致密度的AlN/Y2O3陶瓷.研究表明,Al-N2-Y2O3的自蔓延高温合成(SHS)过程为660℃Al熔化,1000℃Al剧烈挥发并与N2迅速反应形成AlN,放出大量热;当反应温度升至1720℃时,Y2O3与Al2O3形成共晶液相Al5Y3O12,发生液相烧结高温液相烧结使产物的致密度显著提高,但由于其阻碍N2向反应前沿的渗透,产物中残余Al含量增加.随着Y2O3含量的增加,液相烧结作用增强,产物致密度显著提高,抗弯强度及断裂韧性提高.Al-N2-Y2O3体系的SHS致密化主要发生在燃烧波蔓延方向,具有明显的方向性.  相似文献   

8.
碳热还原氮化法合成O′-Sialon粉   总被引:4,自引:2,他引:4  
以纳米SiO2 ,Al(OH) 3 和碳黑为原料 ,在 14 0 0℃N2 气氛下采用碳热还原氮化法合成出O′ Sialon粉。绘出了 14 0 0℃时体系的优势区域图 ,用XRD分析法测定了产物相组成及相对含量 ,用TEM观察了产物的形貌 ,并用EDX分析法测定了产物中O′ Sialon的Si和Al摩尔比。在此基础上 ,研究了保温时间和添加剂含量对合成过程的影响 ,对合成过程机理进行了探讨。结果表明 :保温 7h ,含 3%添加剂的试样中O′ Sialon含量最高 ,达70 %左右 ,O′ Sialon中z值基本达到 0 .3。添加剂含量的增加有利于Al2 O3 向O′ Sialon中固溶。SiO是碳热还原氮化过程的中间产物 ,SiO的挥发导致体系较大的质量损失和Al2 O3 的残存。保温时间超过 8h ,体系气氛的改变使O′ Sialon分解转化为 β′ Sialon  相似文献   

9.
本文用Al作还原剂还原氮化TiO2制备了TiN—Al2O3复合粉体。通过对比不同温度下的含氮率和理论含氮率,可以判断反应进行的程度;通过XRD分析研究不同温度下的相变化;通过SEM、EDS分析观察晶粒的形貌和成分。研究结果发现,TiN在1100℃开始生成,1450℃TiN生成反应结束。SEM照片显示细小、不规则的TiN晶粒和多面体Al2O3晶粒相互交叉均匀分布,Al2O3晶粒尺寸10μm左右,TiN晶粒尺寸2μa左右。表明用此方法可以在比较低的温度下合成颗粒细小分散均匀的TiN-Al2O3复合粉体。  相似文献   

10.
为解决直接氮化法制备AlN粉体过程中存在的问题,采用具有高饱和蒸气压的Zn元素作为原料铝合金的合金元素,研究了Zn元素对Al-Zn以及Al-Mg-Zn合金直接氮化制备AlN粉体的影响。结果表明:Zn元素的挥发可以在反应初期破坏合金熔体氮化形成的氮化膜,避免熔体结块,提高转化率;另一方面,试验及热力学分析表明Zn元素的脱氧作用较差,而Mg元素可以在氮化过程中脱去气氛中的氧,避免Al2O3的形成。因此,采用Al-Mg-Zn三元合金进行直接氮化能够得到低含氧量、低金属杂质残留的纯相AlN。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号