首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Artificial light source for indoor cultivation has been vastly impeded by the lack of high far red emitting phosphors. Recently, Mn4+ activated phosphors were reported to be promising luminescent materials to solve above matter. In this study, controllable design of Ca14Al10Zn6O35:0.15Mn4+ (CAZO:0.15Mn4+) far red emitting phosphors was realized via pH assisted hydrothermal approach. The pure CAZO:0.15Mn4+ phosphors were obtained merely when the reaction pH was 1 or 2. Meanwhile, by adjusting the pH value of the reaction solution, far red emission CAZO:0.15Mn4+ phosphors with grains, sphere-like as well as aggregated bulk particles can be achieved at pH =?4, pH =?6 and pH =?10, respectively. Furthermore, the structures and morphologies depended photoluminescence (PL) performances of CAZO:0.15Mn4+ were checked. The best PL performance was found for the phosphor produced at pH =?6, while over acidic or alkaline conditions would lower the emission intensity. In addition, this phosphor also exhibit good thermal resistance which can maintain 78% initial intensity at 150?°C. The practical indoor tobacco cultivation demonstrated that CAZO:0.15Mn4+ obtained through this pH adjusted hydrothermal route is a promising phosphor for indoor plant growth lighting.  相似文献   

2.
Novel Mn4+-activated KLaMgWO6 red phosphors with different Mn4+ concentrations were successfully synthesized via a high-temperature solid-state reaction method. The phase formation, microstructure, photoluminescence properties, decay lifetimes and internal quantum efficiency were discussed to analyze the properties of the as-prepared phosphors. The samples belonged to monoclinic crystal system with enough WO6 octahedrons that provided suitable sites for Mn4+ ions. Upon the excitation of 348?nm, KLaMgWO6:Mn4+ phosphors gave bright far-red emission around 696?nm due to the 2Eg4A2g transition of Mn4+ ions. The critical concentration of Mn4+ was 0.6?mol% and the concentration quenching mechanism belonged to electric multipolar interaction. Besides, the CIE chromaticity coordinates of the KLaMgWO6:0.6%Mn4+ phosphor were (0.7205, 0.2794) which located in deep red range, and its color purity reached up to 96.6%. The KLaMgWO6:0.6%Mn4+ sample also exhibited high internal quantum efficiency of 43%. All of the admirable optical properties indicate that the KLaMgWO6:Mn4+ phosphors can be applied to indoor plant growth illumination.  相似文献   

3.
Eu3+-activated BaLaMgNbO6 red-emitting phosphors were synthesized by a high-temperature solid-state reaction method. Phase analysis and luminescence were characterized by X-ray diffraction (XRD) and photoluminescence excitation and emission spectra. The XRD patterns showed that BaLaMgNbO6 had a monoclinic structure with space group P21/n. The excitation spectra consisted of a broad charge-transfer band and some sharp f-f absorption peaks characteristic of Eu3+. The intensity ratio of I615/I590 was used to detect the chemical environment of Eu3+. The chromaticity coordinates of BaLa0.7Eu0.3MgNbO6 were (0.67, 0.33), indicating that the BaLaMgNbO6:Eu3+ phosphors were excellent red-emitting phosphors. Under excitation by near-ultraviolet (UV) and blue light, the phosphor not only exhibited intense red emission but also showed high color quality. The Ozawa and Dexter energy-transfer theories were employed to calculate the theoretical quenching concentration and determine the concentration quenching mechanism. In addition, the activation energy of BaLa0.7Eu0.3MgNbO6 was calculated through the Arrhenius equation. A configurational coordinate diagram was used to explain the thermal quenching mechanism.  相似文献   

4.
采用高温固相法合成了CaNb2O6∶Bi3+以及K+,Na+,Li+掺杂CaNb2O6∶Bi3+荧光粉,并用荧光光谱、XRD、场发射扫描电镜分析了材料的结构以及发光性能和机理。相对于纯CaNb2O6,Bi3+以及K+、Na+的引入极大的提升了荧光粉的发光强度,发光效果最好的材料为CaNb2O6∶1%Bi3+,15%K+。  相似文献   

5.
《Ceramics International》2016,42(6):6891-6898
A series of single-phase white-light-emitting phosphors, Eu2+-activated Ba3GdNa(PO4)3F phosphors were synthesized by solid-state reactions. The crystal structure of Ba3GdNa(PO4)3F was been identified by Rietveld refinement of X-ray diffraction pattern. The Eu2+-activated Ba3GdNa(PO4)3F phosphors exhibit broad excitation spectra from 250 to 420 nm, which matched well with the n-UV LED chips. Under the excitation of 365 nm, the emission spectrum almost covered the entire visible region including two emission bands peaked at 472 nm and 640 nm. Three different Eu2+ emission centers in Ba3GdNa(PO4)3F:Eu2+ phosphor were confirmed by their fluorescence decay lifetimes. The optimal concentration of Eu2+ in Ba3GdNa(PO4)3F:xEu2+ was 3 mol% and the corresponding concentration quenching mechanism was verified to be exchange coupling interaction. Furthermore, the white light-emitting diode fabricated with Ba3GdNa(PO4)3F:0.05Eu2+ phosphor and a 370 nm UV chip has a CIE of (0.3267, 0.2976) with a color-rendering index of 78.4 at the CCT of 5287 K.  相似文献   

6.
《Ceramics International》2016,42(14):15294-15300
Eu3+ ions activated NaLaMgWO6 phosphors were successfully synthesized by an improved sol-gel method using citric acid and polyethylene glycol as complexing agents. Crystal structure and doping site were investigated by XRD, Rietveld refinement and Raman spectra. The phosphors had monoclinic double perovskite structure with space group C2/m, as well as layered ordering of A-site and rock-salt ordering of B-site. The blueshift of Raman T2g(1) mode manifested Eu3+ ions had entered into A-site. Thereafter, luminescence properties, such as excitation and emission spectra, CIE coordinates, concentration quenching and thermal quenching were discussed. The quenching concentration for hypersensitive electric dipole transition of Eu3+ reached up to 50.0 mol%. The delayed concentration quenching was observed in NaLaMgWO6: Eu3+ phosphor. The theoretical quenching concentration was obtained based on L. Ozawa's theory, and the quenching mechanism on Dexter's theory. Excellent thermal stability of this phosphor shows that it is a potential red phosphor for solid state lighting.  相似文献   

7.
In this work, the conventional solid-state method was applied to synthesize a series of red-emitting NaLaMgWO6:Sm3+ phosphors. The crystal structure, phase purity, morphology, particle size distribution as well as elemental composition of the as-prepared phosphors were investigated carefully with the aid of XRD, SEM, EDS, FT-IR analyses, indicating the high-purity and micron-sized NaLaMgWO6:Sm3+ phosphors with monoclinic structure were prepared successfully. The spectroscopic properties of Sm3+ in NaLaMgWO6 host including UV–vis diffuse reflection spectrum, photoluminescence excitation and emission spectra, decay curves, chromaticity coordinates and internal quantum efficiency were investigated in detail. Upon excitation with UV (290 nm) and n-UV (406 nm), NaLaMgWO6:Sm3+ phosphor presented red emission corresponding to the 4G5/26HJ (J = 5/2, 7/2, 9/2, and 11/2) transitions of Sm3+, in which the hypersensitive electronic dipole transition 4G5/26H9/2 (645 nm) was with the strongest emission intensity because Sm3+ ions were located at a lattice site with anti-inversion symmetry. The optimal concentration of Sm3+ was different for the given excitation wavelength such as 290 nm and 406 nm, which was interpreted by the extra effect of the energy transfer from W6+-O2- group to Sm3+. The decay lifetime for 4G5/26H9/2 transition of Sm3+ was very short (< 1 ms) and decreased with the increasing Sm3+ concentration. The present investigation indicates that NaLaMgWO6:Sm3+ phosphor could be a potential red component for application in w-LEDs.  相似文献   

8.
《Ceramics International》2023,49(15):24972-24980
Phosphor-converted light-emitting diodes (pc-LEDs) are commonly used to regulate the light environment to control the growth rates and improve the production efficiency of plant. Among them, the exploration of blue-emitting phosphors with high efficiency, low thermal quenching and excellent spectrum resemblance matching with the plant response spectrum is still challenging. Herein, a narrow-band blue-emitting Rb2Ba3(P2O7)2:Eu2+ phosphor with high color purity of 93.4% has been developed. Under 345 nm excitation, it exhibits a blue emission band centered at 413 nm with a full width at half-maximum (FWHM) of 36 nm, and the emission spectrum of Rb2Ba3(P2O7)2:0.060Eu2+ sample shows 85.7% spectrum resemblance with the absorption spectrum of chlorophyll-a in the blue region from 400 to 500 nm. In addition, the temperature-dependent emission spectra demonstrate that the Rb2Ba3(P2O7)2:0.060Eu2+ phosphor has good thermal stability and small chromaticity shift, with the emission intensity dropping to 72.5% at 423 K of the initial intensity at 298 K and a chromaticity shift of 38 × 10-3 at 498 K. All results suggest that the blue-emitting Rb2Ba3(P2O7)2:Eu2+ phosphor has potential application in plant growth LEDs.  相似文献   

9.
Eu3+-activated MgAl(PO4)O:phosphor has been synthesized by a high temperature solid state reaction and efficient red emission under near-ultraviolet excitation is observed. The emission spectrum shows a dominant peak at 594 nm due to the 5D07F1 transition of Eu3+. The excitation spectrum is coupled well with the emission of UV LED (350–410 nm). The effect of Eu3+ concentration on the luminescent properties of MgAl(PO4)O:Eu3+ and the mechanism of concentration quenching of Eu3+ are studied. The results show that MgAl(PO4)O:Eu3+ is a promising red-emitting phosphor for white LEDs.  相似文献   

10.
Eu2+ and Mn2+ singly doped and Eu2+/Mn2+-codoped Ca4Mg5(PO4)6 phosphors were synthesized via combustion synthesis. Mn2+-singly doped Ca4Mg5(PO4)6 phosphor exhibits a single red emission in the wavelength range of 500–700 nm due to the 4T1(4G)→6A1(6S) transition of Mn2+. Eu2+/Mn2+ co-doped phosphor emits two distinctive luminescence bands: a blue one centered at 442 nm originating from Eu2+ and a broad red-emitting one peaked at 609 nm from Mn2+. Energy transfers from Eu2+ to Mn2+ were discovered by directly observing significant overlap of the excitation spectrum of Mn2+ and the emission spectrum of Eu2+ as well as the systematic relative decline and growth of emission bands of Eu2+ and Mn2+, respectively. Based on the principle of energy transfer, the relative intensities of blue and red emission could be tuned by adjusting the contents of Eu2+ and Mn2+.  相似文献   

11.
《Ceramics International》2023,49(15):25232-25239
The phosphor-converted light emitting diode (pc-LED) is an efficient light source to adjust growth rhythm and raise yield of plant. Blue and red light play the dominant role in the process of plant growth, thus it is meaningful to search the blue-red dual emission phosphors with high quantum field and better thermal stability for developing plant growth LED. Herein, the blue-red dual emission phosphors were synthesized by co-doping Sb3+ and Ho3+ into the Cs2NaLuCl6, which emitted blue (454 nm) to red (657 nm) light with increasing the content of Ho3+ to 25% and their relative intensity could be tuned through adjusting the concentration of Ho3+ due to the efficient energy transfer from Sb3+ to Ho3+. The intensity of blue emission from Sb3+ and red emission from Ho3+ could maintain 78.4 and 75.8% of the room temperature at 150 °C, respectively. Furthermore, the spectra of fabricated blue and red LEDs match well with the absorption of carotenoid, Phytochrome and Chlorophyll b, implying the samples possess great application potential in plant growth LED.  相似文献   

12.
A novel single-phased white-light-emitting phosphor Sm3+ doped LiCa3MgV3O12 (LCMV) was developed. The LCMV host was one self-activated bluish-green emitting phosphor, which possessed an efficient excitation band in the 250–400?nm wavelength range and showed an intense broadband bluish-green emission with internal quantum efficiency (IQE) of 39%. Doping Sm3+ ions in to LCMV host induced tunable-color emissions, due to the energy transfer from [VO4]3? to Sm3+ ions. Importantly, under 340?nm excitation, the LCMV:Sm3+ can emitted bright white light by combining the self-activated luminescence of LCMV host and the red emissions of Sm3+ ions, and the IQE of the white-emitting composition-optimized LCMV:0.01Sm3+ phosphors reached up to 45%. These white-emitting LCMV:Sm3+ phosphors have potential applications in white light-emitting diodes and optical display devices.  相似文献   

13.
In this study, a series of red-emitting Ca3Sr3(VO4)4:Eu3+ phosphors co-doped with La3+ was prepared using the combustion method. The microstructures, morphologies, and photoluminescence properties of the phosphors were investigated. All Ca3Sr3(VO4)4:Eu3+, La3+ samples synthesized at temperatures greater than 700 ℃ exhibited the same standard rhombohedral structure of Ca3Sr3(VO4)4. Furthermore, the Ca3Sr3(VO4)4:Eu3+, La3+ phosphor was effectively excited by near-ultraviolet light of 393 nm and blue light of 464 nm. The strong excitation peak at 464 nm corresponded to the 7F05D2 electron transition of Eu3+. The strong emission peak observed at 619 nm corresponded to the 5D07F2 electron transition of Eu3+. Co-doping with La3+ significantly improved the emission intensity of Ca3Sr3(VO4)4:Eu3+ red phosphors. The optimum luminescence of the phosphor was observed at Eu3+ and La3+ concentrations of 5% and 6%, respectively. Moreover, co-doping with La3+ also improved the fluorescence lifetime and thermal stability of the Ca3Sr3(VO4)4:Eu3+ phosphor. The CIE chromaticity coordinate of Ca3Sr3(VO4)4:0.05Eu3+, 0.06La3+ was closer to the NTSC standard for red phosphors than those of other commercial phosphors; moreover, it had greater color purity than that of all the samples tested. The red emission intensity of Ca3Sr3(VO4)4:0.05Eu3+, 0.06La3+ at 619 nm was ~1.53 times that of Ca3Sr3(VO4)4:0.05Eu3+ and 2.63 times that of SrS:Eu2+. The introduction of charge compensators could further increase the emission intensity of Ca3Sr3(VO4)4:Eu3+, La3+ red phosphors. The phosphors synthesized herein are promising red-emitting phosphors for applications in white light-emitting diodes under irradiation by blue chips.  相似文献   

14.
Novel double-perovskite K(Y0.95-xLuxEu0.05)CaWO6 red phosphors were successfully prepared by the controllable citrate-EDTA complexing method. XRD with structure refinement, FTIR, Raman and photoluminescence spectra were combined to systematically investigate the structure parameters and luminescence properties of prepared phosphors. The substitution of Lu3+ with smaller ionic radius resulted in the lower symmetry even with the same space group of C2/m, which was also directly observed from the red shift and splitting of Raman T2?g(1) mode. The concentration higher than x?=?0.6 made the intensity alteration in the excitation spectra from charge transfer band to 4f?4f of Eu3+. The obvious enhancements of red emission at 615?nm were obtained under both blue and ultraviolet lights, respectively, and reached almost the same intensity at x?=?0.6. Meanwhile, the more standard red light could be found by the gradual shifts of CIE chromaticity coordinates and bigger ratio of red/orange emission. The substitution of Lu3+ improved the quality and emission intensity of red light of this double perovskite system and the composition optimized phosphor of K(Y0.35Lu0.6Eu0.05)CaWO6 exhibited great potential in the application of white LEDs.  相似文献   

15.
A novel Mn4+-doped strontium lanthanum gallate red phosphor SrLaGaO4:Mn4+ has been successfully prepared via the conventional solid-state reaction method. Phase purity, photoluminescence excitation/emission spectra, concentration quenching, decay curves, and temperature-dependent photoluminescence have been investigated systematically. SrLaGaO4:Mn4+ phosphor exhibits broad excitation band from 250 to 600 nm and emits intense red light centered at 716 nm arising from spin-forbidden transition, 2E → 4A2 of Mn4+. The optimal dopant concentration of Mn4+ is determined to be 0.2 mol%. Dipole-dipole interaction is supposed to be the mechanism of concentration quenching. The crystal-field strength Dq, the Racah parameters B and C, and the nephelauxetic ratio β1 of SrLaGaO4:Mn4+ have been calculated according to its luminescent spectra. Our systematic investigation on this new phosphor can provide a reference for the development of red-emitting phosphor.  相似文献   

16.
《Ceramics International》2023,49(3):4541-4550
Cs4PbBr6 perovskite quantum dots (QDs) have unique optoelectronic properties and are expected to become a new generation of luminescent materials. However, poor stability, low photoluminescence quantum yield (PLQY), and poor understanding as to the origin of photoluminescence behavior limit its further application. In this study, a series of Tb3+-doped Cs4PbBr6 perovskite QD glasses with excellent stability were obtained through the optimization of Tb3+ doping concentration and in-situ crystallization temperature. Density functional theory calculations and experimental characterization showed that an appropriate amount of lattice-incorporated Tb3+ ions can reduce structural defects in QDs, improve the PLQY, and reduce the QD heavy-metal requirements. Notably, the maximum PLQY value reached 47%, which is near to the Cs4PbBr6 perovskite crystal. Furthermore, a high-performance white light-emitting diode (WLED) device was prepared. The device featured a color rendering index of 80 and luminous efficiency of 41 lm W?1. Finally, a QD glass with double emission peaks was prepared by controlling the in-situ crystallization temperature (550 °C). The temperature sensitivity of the QD glass was then studied using the fluorescence intensity ratio method. The maximum relative temperature sensitivity (Sr) reached 2.03% K?1, which is higher than the previously reported value. Thus, the method proposed in this study can greatly improve the photoluminescence properties of Cs4PbBr6 QD glass and expand its applications in WLED and visual temperature sensing.  相似文献   

17.
Alkali metal ion substitution is an effective strategy to improve the luminescence properties of phosphors. In this work, a series of red-emitting phosphors Na1-xLix/2Kx/2La0.6Eu0.4MgWO6 were prepared by a traditional high-temperature solid-state reaction. Their phase structure, microstructure, luminescence properties and potential application in phosphor-converted white light-emitting diodes (pc-WLEDs) were investigated in detail. X-ray diffraction (XRD) result revealed the formation of a solid solution when x?≤?0.3, which kept monoclinic structure of NaLaMgWO6. Photoluminescence investigation indicated that the partial substitution of Li+/K+ ions for Na+ ions improved largely the red emission of Eu3+. Based on the optimized Na0.7Li0.15K0.15La0.6Eu0.4MgWO6 sample with relatively good thermal stability, a WLED device was fabricated by combining a near-ultraviolet (NUV) chip (~400?nm) with the phosphor mixture of commercial green/blue phosphors and the optimized red phosphor. The results indicated that the optimized red phosphor in this work could be a potential candidate for WLEDs pumped by NUV chips.  相似文献   

18.
A new vanadate Ca3LiMgV3O12 and its Eu3+-doped counterparts were synthesized. Rietveld confinement result of Ca3LiMgV3O12 host indicates that it belongs to cubic space group Ia-3d with parameters of a =?12.4300?Å, V =?1920.49?Å3, Z?=?8. Under UV excitation, pure Ca3LiMgV3O12 exhibits a bluish-green broadband emission at 490?nm, while Eu3+ doped Ca3LiMgV3O12 shows one bluish-green broad band with a series of red sharp peaks, which originate from the V5+-O2- charge transfer and the Eu3+ intra-4f transitions, respectively. The occurrence of VO4→Eu3+ energy transfer is confirmed by decay lifetime analysis and time-resolved emission spectra. It is found that emitting color varies from bluish-green to orange-red with increasing Eu3+ concentration. VO4 bluish-green and Eu3+ red emission shows different thermal quenching response with increasing temperature, due to their different activation energy.  相似文献   

19.
Structural, elastic and electron magnetic resonance investigations of spinel ferrites with the formula MFe2O4 (M = Mg2+, Zn2+, Mn2+) synthesized by the sol-gel auto-combustion method are reported here. XRD patterns revealed the co-existence of secondary phases along with the ferrite phase. The lattice parameter (8.301?Å, 8.366?Å and 8.434?Å) was found to be varying according to the ionic radii of cations. As determined by scanning electron microscopy (SEM), ZnFe2O4 has a comparatively narrow distribution of grain sizes (1.3–3.8?µm) compared to those in MnFe2O4 (0.8–4.3?µm) and MgFe2O4 (0.3–4.8?µm). The estimated values of average crystallite sizes (17.5?nm, 21.3?nm and 23.3?nm) determined from the X-ray diffraction peaks are considerably less than the average grain sizes (1.3?µm, 1.6?µm and 2.7?µm) estimated from the SEM histograms. The vibrational frequencies in FTIR spectra are in the conformity with the cubic spinel structure and their variation supports the variation of lattice parameter. Equal values of Poission's ratio (0.35) were obtained for the three systems which represent the isotropic behaviour of spinel ferrite systems. The exceptional low value of Lande's g-parameter for ZnFe2O4 indicates the dominance of Fe3+–O–Fe3+ superexchange interaction. Though cation redistribution is possible in the present ferrite systems, the secondary phases existed in these ferrite systems are predominantly influencing the structural, elastic and electron magnetic resonance properties.  相似文献   

20.
We synthesized and investigated the effect of Eu2+ ions doping in a novel phosphor-silicate Ca8Sc2(PO4)6(SiO4) phosphor. The structure and photoluminescence properties were determined by X-ray powder diffraction Rietveld refinement, diffuse reflection spectra, emission-excitation spectra, decay curves and temperature dependence spectra. The phosphors showed an asymmetric broad-band blue emission (Eu2+) with peak at 470?nm. Furthermore, we presented the Ca7.96Sc2(PO4)6-y(SiO4)1+y:0.04Eu2+ phosphors by co-substituting [Eu2+-Si4+] for [Ca2+-P5+], and different behaviors of luminescence evolution in response to structural variation were verified among the series of phosphors. The results were attributed to the presence of multi Ca2+ sites, resulting in the mixing of blue and green emissions for Eu2+ ions. The complex anion substitution of [PO4]3- by [SiO4]4- induced an increased crystal field splitting of the Eu2+ ions, which caused a decrease in emission energy from the 5d excited state to the 4f ground state and a resultant red-shift from 470?nm to 520?nm. All the properties indicated that the Ca8Sc2(PO4)6(SiO4):Eu2+ phosphors have potential application for color-tunable WLEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号