首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Boron nitride/silicon nitride (BN/Si3N4) composite ceramics were fabricated via the in-situ nitridation of boron (B) and silicon (Si) powders in forming gas (95%N2/5%H2) at 1390?°C. The effect of the B content on the phase composition, microstructure, density/porosity, machinability as well as mechanical properties of nitridized BN/Si3N4 composite ceramics was investigated. The addition of B slightly increased the nitridation degree of the Si and B powders mixture, and improved the ratio of the β-Si3N4 phase significantly at low B contents. B powders may have acted as a nucleating agent to promote the formation of β-Si3N4 crystals. A core-shell Si3N4/BN structure was revealed by the TEM technique, and the number of BN layers increased with the increase of the B content. The in-situ BN formed by the nitridation of B played a similar role with the BN directly added in enhancing the machinability of the BN/Si3N4 composite ceramics. The method of the in-situ nitridation of B is also effective to prepare SiC fiber-reforced BN/Si3N4 ceramic matrix composites.  相似文献   

2.
Graded Si3N4 ceramics with sandwich-like microstructure were fabricated by the combination of hot-pressing, spark plasma sintering and β-Si3N4 seeds. Phase compositions, microstructures, mechanical properties, and wear behaviors were investigated. Main α-Si3N4 phase were detected in the outer layers, and only β-Si3N4 phase were observed in the inner layers. The outer layer with ultra-fine equiaxed grains were well bonded to the inner layer with a distinct bimodal grain size distribution. Vickers hardness of outer layer (~21.2?GPa) was much higher than that of inner layer (~16.1?GPa), whereas fracture toughness of outer layer (~3.5?MPa?m1/2) was much lower than that of inner layer (~5.9?MPa?m1/2), indicative of the hard surface and tough core. Due to the ultra-fine microstructure and high hardness of outer layer, the graded Si3N4 ceramics exhibited superior wear resistance with low wear rate.  相似文献   

3.
The AlN/MAS/Si3N4 ternary composites with in-situ grown rod-like β-Si3N4 were obtained by a two-step sintering process. The microstructure analysis, compositional investigation as well as properties characterization have been systematically performed. The AlN/MAS/Si3N4 ternary composites can be densified at 1650 °C in nitrogen atmosphere. The in-situ grown rod-like β-Si3N4 grains are beneficial to the improvement of thermal, mechanical, and dielectric properties. The thermal conductivity of the composites was increased from 14.85 to 28.45 W/(m K) by incorporating 25 wt% α-Si3N4. The microstructural characterization shows that the in-situ growth of rod-like β-Si3N4 crystals leads to high thermal conductivity. The AlN/MAS/Si3N4 ternary composite with the highest thermal conductivity shows a low relative dielectric constant of 6.2, a low dielectric loss of 0.0017, a high bending strength of 325 MPa, a high fracture toughness of 4.1 MPa m1/2, and a low thermal expansion coefficient (α25–300 °C) of 5.11 × 10?6/K. This ternary composite with excellent comprehensive performance is expected to be used in high-performance electronic packaging materials.  相似文献   

4.
SiC, Si3N4 and SiO2 powders were ground by a vibration ball mill, the pot and balls of which were made of Si3N4 ceramics, in a purified methanol medium. The mean particle diameters of SiC and SiO2 powders were ca. 0.1 μm and thus ultrafine particles were manufactured. The increasing rate of specific surface area by fine grinding was largest on SiO2 powders, and the rate decreased gradually with an increase in grinding time. The specific surface area of Si3N4 powders increased proportionally with an increase in grinding time. The grindability was obtained in the following order: SiO2 > SiC > Si3N4. The ground SiC powders showed a large lattice strain and little fragmentation of crystallites. The strain and the crystallite size of ground Si3N4 powders were moderate.  相似文献   

5.
In this study, Si3N4/Si2N2O composite ceramics prepared by hot pressing were used as an example, and the material fracture morphology and fracture mechanism were analyzed. Based on the formula of fracture toughness measured by an indentation method, a quantitative computation method was proposed to determine the toughened effect of ceramic materials resulting from the crack deflection by the second phase. The grain size and sintering density are increased with the increase of sintering temperature. The toughening effects resulting from the crack deflection is increased, and the main mode of fracture is transformed into the transgranular fracture. The Si2N2O grains can play a role in the toughening process because these grains can hinder the cracks extending along the radial direction. However, when the cracks extend in the axial direction, the toughening effect of Si2N2O grains is not obvious because of the internal stacking faults in the axial direction. The improved indentation method can quantitatively analyze the toughening effect of the second phase of composite ceramics, and the validity of this method are verified by comparing the fracture toughness of Si3N4/Si2N2O and fine grained β- Si3N4 ceramics.  相似文献   

6.
This study addresses itself in the performance of Si3N4 combustion synthesis, occurred in the presence of Si3N4 and NH4Cl powders in N2 atmosphere of 6 MPa. Mechanochemical activation of Si powder, achieved via high-energy attrition milling up to 24 h, increases the intensity and the efficiency of the reactions between Si and N2 as well as combustion temperature. Benign processing conditions, anticipated with lower mechanochemical activation of Si powder, low N2 pressures, and low combustion temperatures, favor formation of α-Si3N4.  相似文献   

7.
Si3N4 ceramic was successfully joined to itself with in-situ formed Yb-Si-Al oxynitride glass interlayer. The joints were composed of three parts: (I) Si3N4 matrix, (II) oxynitride glass interlayer in which hexagonal or fine elongated β-sialon grains and a few ball-like β-Si3N4 grains exist, and (III) diffusion zone in Si3N4 matrix containing a thin dark layer and a ~ 25?µm thick bright layer. The seam owned similar microstructure to matrix and was inosculated with the matrix as a whole. The strength of the joint tended to increase with the increase of bonding temperature and reached the value of 225?MPa, when the joints were prepared at 1600?°C for 30?min under a pressure of 1.5?MPa. The high-temperature strength remained 94.7% and 75.2% of R.T. strength when the joints were tested at 1000?°C and 1200?°C, respectively. It may be contributed to the high softening temperature of the Yb-Si-Al oxynitride glass phase formed in the seam. Even suffered to the air exposure for 10?h at 1200?°C, the residual strength of the joints was still 143?MPa, attributed to the existence of YbAG phase.  相似文献   

8.
Large-scale composite powders containing silicon carbide (SiC) particles and silicon nitride nanowires (Si3N4-NWs) were synthesized in situ by combustion synthesis (CS). In this process, a mixture of silicon, carbon black, polytetrafluoroethylene (PTFE) and a small amount of iron powders was used as the precursor. The products were characterized by XRD, SEM, EDS and TEM. The particles are equiaxed with diameters in the micron range, and the in situ formed nanowires are straight with uniform diameters of 20-350 nm and lengths of tens of microns. The Si3N4-NWs are characterized to be α-phase single crystals grown along the [1 0 1] or [1 0 0] direction. VLS and SLGS processes are proposed as the growth mechanisms of the nanowires. The as-synthesized powders have great potential for use in the preparation of high-performance SiC/Si3N4-NW composites.  相似文献   

9.
Si3N4 ceramics modified with SiC nanofibers were prepared by gel casting aiming to enhance the dielectric and microwave absorption properties at temperatures ranging from 25?°C to 800?°C within X-band (8.2–12.4?GHz). The results indicate that the complex permittivity and dielectric loss are significantly increased with increased weight fraction of SiC nanofibers in the Si3N4 ceramics. Meanwhile, both complex permittivity and dielectric loss of SiC nanofibers modified Si3N4 ceramics are obviously temperature-dependent, and increase with the higher test temperatures. Increased charges mobility along conducting paths made of self-interconnected SiC nanofibers together with multi-scale net-shaped structure composed of SiC nanofibers, Si3N4 grains and micro-pores are the main reason for these enhancements in dielectric properties. Moreover, the calculated microwave absorption demonstrates that much enhanced microwave attenuation abilities can be achieved in the SiC nanofibers modified Si3N4 ceramics, and temperature has positive effects on the microwave absorption performance. The SiC nanofibers modified Si3N4 ceramics will be promising candidates as microwave absorbing materials for high-temperature applications.  相似文献   

10.
In this study, porous β-Si3N4 ceramics containing limited amount of Sm2O3 and CaO as sintering aids were produced by addition of potato starch (10 and 20 vol.%) and partial sintering. Two different Si3N4 powders, α- and β-, were used as starting materials. Scanning electron microscopy investigations revealed that development of elongated β-Si3N4 grains were much more pronounced when α-Si3N4 starting powder was used. Even though porosity values of the compositions prepared by using α-Si3N4 (~57.0–58.4%) is significantly higher than the samples produced by β-Si3N4 (42.6%), no significant change was observed for the bending strength, fracture toughness and Weibull modulus. This indicates that microstructural features have a significant contribution to the mechanical properties of the porous materials in terms of bending strength and fracture toughness.  相似文献   

11.
Based on orthogonal experimental results of porous Si3N4 ceramics by gel casting preparation, a three-layer back propagation artificial neural network (BP ANN) was developed for predicting the performances of porous Si3N4 ceramics. The results indicated that BP ANN was a very useful and accurate tool for the prediction and optimization of porous Si3N4 ceramics performances. By using the developed ANN model, the influences of the compositions on performances of porous Si3N4 ceramics were investigated, and some important conclusions were drawn as follows: for the flexural strength of Si3N4 ceramics, solid loading has an optimum value where can achieve a maximum value, and the optimum solid loading decreases with the increase of monomer content; the porosity of sintering body monotonically decreases with the increase of solid loading, and it increases with monomer content; the porosity of sintering body monotonically increases with the increase of the ratio of crosslinking agent to monomer.  相似文献   

12.
《Ceramics International》2020,46(15):23734-23741
Silicon nitride (Si3N4) particles with different morphologies have been used in many fields. In this work, α-Si3N4 whiskers and granular particles with high-phase purity were successfully tailored by the controllable crystallisation process of amorphous Si3N4 powders under different N2 pressure. Impressively, α-Si3N4 whiskers were prepared by simply heat treating amorphous Si3N4 powders at 1550 °C for 2 h under the low N2 pressure of 0.2 MPa, whereas equiaxed α-Si3N4 particles with uniform size of ~280 nm were obtained under an elevated N2 pressure of 2.0 MPa. With the evaluated N2 pressures and temperatures, large scale α-Si3N4 whiskers or equiaxed α-Si3N4 particles could be produced. The growth mechanisms of the α-Si3N4 particles with distinct morphologies were rationally proposed, and these consist of two main growth processes. First, amorphous Si3N4 powders decomposed into Si(g) and N2(g) under high-temperature treatment. Subsequently, N2(g) dominated the recombination of the evaporated chemical with the Si3N4 molecule. The initial N2 concentration, which plays a key role in tailoring the shape and size of products, was controlled by the N2 pressure.  相似文献   

13.
We have investigated a possible method of synthesizing carbon-free, nano-silicon nitride-silicon carbide (Si3N4/SiC) powders from the waste silica fume for the first time, using the integrated mechanical and thermal activation (IMTA) process. This novel process results in the formation of nano-Si3N4/SiC powders at 1465 °C with crystallite sizes as small as 45 nm. In order to synthesize carbon-free nano-Si3N4/SiC powders, two different approaches, one using the H2 gas and the other using air, have been studied for their effectiveness in removing the free carbon present. It is found that the H2 treatment is not very effective although both Si3N4 and SiC are stable during the H2 treatment. In contrast, removing the free carbon using air is effective, and the limited oxidation of nano-Si3N4 and SiC can be achieved if the air treatment is terminated soon after the free carbon is eliminated. This study has provided a clear pathway and understanding for effectively synthesizing carbon-free, nano-Si3N4/SiC powders from the silica fume.  相似文献   

14.
《应用陶瓷进展》2013,112(1):35-37
Abstract

Nitrogen rich multication α-SiAlON ceramics doped with Y-Ce have been densified by gas pressure sintering using α-Si3N4 or mixed β/α-Si3N4 starting powder. The effects of α-SiAlON nucleation and growth mechanisms were investigated by using di fferent sintering cycles. X-ray diffraction studies after sintering revealed that 21R polytype phase was present in addition to α -SiAlON matrix phase. Microstructural characterisation of sintered materials prepared using α-Si3N4 powder in the starting composition revealed a typical equiaxed grain morphology, as expected if the α-SiAlON nucleation step was not applied before grain growth. However, needlelike α-SiAlON grains were observed if a nucleation step was carried out before final sintering. In starting powders containing mixed β/α-Si3N4, needlelike grain morphology was also observed. The effects of different Si3N4 starting powders and sintering conditions on the grain morphology and mechanical properties are discussed.  相似文献   

15.
By using the Si3N4 ceramic specimens prepared with fine and coarse α-Si3N4 powders, respectively, the phase transformation from α- to β-Si3N4 and concurrent microstructural evolution during sintering were monitored. For the compact prepared with fine powder, the α/β transformation was completed much earlier than the coarse powder. The higher fraction of pre-existing β-grains in fine powder and its higher reactivity compared to those of coarse one are likely to cause a rapid phase transformation. The growth rate of β-Si3N4 grains at the expense of α-Si3N4 during phase transformation stage was quite significant while that after they impinge each other was very limited. As a result, the specimens prepared with coarse and fine initial α-Si3N4 powders resulted in coarse and fine grained β-Si3N4 ceramics, respectively. The specimen prepared with mixture of fine and coarse α-Si3N4 powders exhibited the microstructure containing a few elongated large grains and showed an increased value of fracture toughness.  相似文献   

16.
The combined effect of carbon and Fe-Si alloys on Si3N4 was explored by heat treating Si3N4 materials at 1500?°C and 1600?°C in flowing nitrogen. The phase compositions and microstructures were characterized by XRD and SEM, respectively. The reaction degree was analysed based on the mass variation in the system. Combined with a thermodynamic assessment, the reaction mechanism was studied and proposed. The results show that the coexistence of Fe-Si alloys and carbon accelerates the phase transformation from Si3N4 to SiC and worsens the strength of Si3N4 materials. Fe-Si alloys accelerate the deposition of CO gas to free carbon and accelerate the decomposition of Si3N4 to Si. The in situ-formed Si can react with carbon, thus accelerating the thermodynamic and kinetic formation of SiC. Along with the growth of pores and the deterioration of the wettability of Fe-Si alloys during this process, the microstructure changes from a network constituted by Si3N4 columns/whiskers to porous SiC particles with weak linkages, which leads to the failure of Si3N4 materials. Therefore, the combined effect of Fe-Si alloys and carbon is harmful for Si3N4 materials at 1500–1600?°C.  相似文献   

17.
Porous β-Si3N4 ceramics were prepared by combustion synthesis using Si, α-Si3N4 and Y2O3 powders as raw materials. The effects of α-Si3N4 diluent content in pellet on nitriding rate, shrinkage, porosity and flexural strength of porous ceramics were investigated. The results show that porous β-Si3N4 ceramic with porosity of 49 % and flexural strength of 151 MPa can be obtained by combustion synthesis when the content of α-Si3N4 diluent in raw materials is equal to that of Si, and the linear shrinkage of porous ceramic is only 2.8 %. In addition, the porous ceramic can be drilled and turned by WC drill and turning tool respectively.  相似文献   

18.
Borophosphosilicate bonded porous silicon nitride (Si3N4) ceramics were fabricated in air using a conventional ceramic process. The porous Si3N4 ceramics sintered at 1000–1200 °C shows a relatively high flexural strength and good dielectric properties. The influence of the sintering temperature and contents of additives on the flexural strength and dielectric properties of porous Si3N4 ceramics were investigated. Porous Si3N4 ceramics with a porosity of 30–55%, flexural strength of 40–130 MPa, as well as low dielectric constant of 3.5–4.6 were obtained.  相似文献   

19.
Thermal shock resistance of Si2N2O–Si3N4 composites was evaluated by water quenching and subsequent three-point bending tests of strength diminution. Si2N2O–Si3N4 composites which was prepared with in situ liquid pressureless sintering process using Yb2O3 and Al2O3 powders as sintering additives by gelcasting showed no macroscopic cracks and the critical temperature difference (ΔTc) could be up to 1400 °C. A mass of pores existed in the sintered body and the irregular shaped fibers extended from the pores increased the thermal shock property.  相似文献   

20.
A non-sintering fabrication method for porous Si3N4 ceramics with high porosity and high mechanical strength was proposed. Strength of the porous ceramics can be obtained by silica sol mass transfer process in hydrothermal conditions rather than a traditionally controlled high temperature sintering process. Under hydrothermal circumstances, silica sol is continuously transferred to the necks of Si4N3 powder compact, depositing there and thus consolidating the ceramic skeleton. The key of the method to obtain homogeneous microstructure and mechanical strength is how to keep the silica sol from gelatin during hydrothermal procedure. The stabilization of silica sol and its affecting factors were studied. The results indicated that ultrasonic treatment makes alkali-catalyzed silica sol remain stable even in 200?℃ hydrothermal condition, which insures consecutive silica transportation. The effect of hydrothermal time on open porosity/mechanical strength of the porous Si4N3 ceramics were also thoroughly investigated. The porous Si4N3 ceramics with open porosity above 42% and flexural strength of 45?MPa were obtained without any high temperature sintering process. This method can be widely employed for the preparation of other porous ceramics as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号