首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Porous Si3N4 ceramics were prepared by gel casting combined with a reaction bonding route using monodispersed PMMA as the pore former, and Isobam was used as a gel agent. With the PMMA addition varying from 0 to 20 wt.%, the bending strength was degraded from 94.0 to 39.1 MPa owing to the increased porosity and decreased bulk density. The β-Si3N4 prismatic grains and round pores introduced by the monodispersed PMMA micro balls would endow the samples with high strength, and the permeability of the resulting samples was increased obviously with the increase of PMMA addition. Flue gas filtration test exhibited that the filtration efficiency of the porous ceramics filter was not degraded with introducing of the PMMA pore former, even though the permeability was increased obviously. The block type of the sample with 20-wt.% PMMA additions during filtration was cake filtration, which indicates that the sample has the characteristic of being reusable after back-blowing in flue gas filtration applications. Porous Si3N4 with high strength and permeability fabricated via the reaction bonding route exhibits great potential for low-cost high-performance ceramics filters.  相似文献   

2.
The effects of PMMA as a pore-forming reagent and the powder for Cs-deficient pollucite, Cs9Al0.9Si2.1O6, calcined at 1073 K, on the microstructure of the porous body of Cs0.9Al0.9Si2.1O6 were investigated. The Cs0.9Al0.9Si2.1O6 porous bodies were fabricated by sintering the green compacts of the calcined powder and PMMA adding 35 mass% to the calcined powder. When the green compact was heated at 873 K in air for 20 h, pores <1 μm were observed in the porous body, suggesting that the PMMA previously dissolved in acetone was uniformly distributed in the calcined powder by the ball milling. The pore size of the obtained porous structure increased with increasing the size of the aggregated particles and the pore size distribution was significantly related to the size of Al2O3 balls and the time for the ball milling for mixing the calcined powders and PMMA.  相似文献   

3.
A novel processing route for producing microcellular SiC ceramics with a duplex pore structure has been developed using a polysiloxane, carbon black, SiC, Al2O3, Y2O3, and two kinds of pore former (expandable microspheres and PMMA spheres). The duplex pore structure consists of large pores derived from the expandable microspheres and small windows in the strut area that were replicated from the PMMA spheres. The presence of these small windows in the strut area improved the permeability of the porous ceramics. The gas permeability coefficients of porous SiC ceramics were 0.13 × 1012 m2 for the porous SiC without PMMA spheres, 0.47 × 1012 m2 for the porous SiC with 10 wt% PMMA spheres, and 0.82 × 1012 m2 for the porous SiC with 20 wt% PMMA.  相似文献   

4.
以Al2O3、ZrO2陶瓷粉体为溶质,以莰烯为溶剂,以Texaphor963作为添加剂,制备出低粘度高稳定性的陶瓷浆料,采用冷冻注模工艺制备出具有较高强度的陶瓷坯体,采用无压烧结工艺,得到了多孔Al2O3-ZrO2陶瓷制品,并对其微观结构进行了研究。  相似文献   

5.
《Ceramics International》2020,46(4):4762-4770
Herein, porous calcium hexaluminate ceramics that contain pores exhibiting multiple morphologies were fabricated via in situ reaction sintering using α-Al2O3 powders and pre-fired CaO/Al2O3 pellets. The results indicated that the composition of the pre-fired CaO/Al2O3 pellets significantly affected the pore morphology, reaction-diffusion mechanisms, sintering behaviour and properties of the porous CA6 ceramics. For the specimens containing low CaO/Al2O3-ratio (0.37) pellets, the main reaction occurred by solid state diffusion, i.e. ion diffusion through the solid reactant phase, which resulted in a slow process and low CA6 formation rate at an elevated sintering temperature. With higher CaO/Al2O3-ratio (0.57) pellets, large-sized pores were observed because of transient liquid phase diffusion during the sintering process. The transient liquid phase diffusion effect increased the porosity of the porous ceramics and promoted the formation of a large number of plate-like CA6 grains in the walls of the pores, enhancing their mechanical properties and high-temperature performance. The porous CA6 ceramics containing high CaO/Al2O3-ratio (0.57) pellets sintered at 1700 °C exhibited high open porosity (55.88%), low thermal conductivity and excellent high-temperature performance.  相似文献   

6.
Porous alumina, with monodispersed PMMA as pore former and Y2O3 as sintering additive, was prepared via a gel casting route with Isobam as a gelling agent. The effects of PMMA addition on its properties, including apparent porosity, bulk density, strength, permeability, and corrosion resistance to acid/alkali, were investigated. With PMMA addition increased, the apparent porosity and permeability were increased obviously, while strength and corrosion resistance to acid/alkali were deteriorated due to increased porosity. Higher firing temperature resulted in lower porosity, higher strength, lower permeability, and better corrosion resistance to acid/alkali. Coarser raw powders resulted in lower strength and higher permeability due to the coarser structure and larger pores of the fabricated samples. Because Y2O3 was used as a sintering additive, and no silica was introduced, the resulting samples possess better corrosion resistance to acid and alkali, especially much better corrosion resistance to alkali, than those reported with silica introduced.  相似文献   

7.
Porous Si3N4 ceramics with tailored pore structures were fabricated via self-propagating high temperature synthesis (SHS) using Polymethylmethacrylate (PMMA) as pore forming agent. The pore structures, mechanical properties and permeation performance of porous Si3N4 ceramics were investigated by altering the particle sizes and amount of PMMA. With the increasing content of PMMA, the flexural strength of samples decreased from 102.5 MPa to 9.4 MPa. The tortuosity which showed irregular variation affected gas permeability directly. The samples with 20 wt% content of PMMA exhibited the maximum Darcian and non-Darcian constants with the smallest tortuosity. Moreover, the comparison of permeability coefficients with other ceramics via different pore forming methods in literature was presented. The specimens exhibited great permeability due to the large pore sizes created by the elongated and coarsened β-Si3N4 grains during the SHS process, providing a low-cost and environmentally friendly method for preparing high permeability porous Si3N4 supports.  相似文献   

8.
In traditional aqueous slurry freezing casting processing, the growth method of ice crystals is hard to control, resulting in the uncontrollable pore's morphologies of the porous ceramics. In the experimental, the pure Al2O3 sol was used to substitute water as a medium for preparing ceramic slurry. With Al2O3 sol addition, it becomes easy to control the microstructure and pore's morphologies of the porous Al2O3 ceramics via adjusting of the solid loading, composition of the ceramic slurries, as well as the cooling methods. The SEM micrographs showed that the sol-contained ceramic slurry combined with freeze casting processing can easily prepare the porous Al2O3 ceramics with different pore sizes and different morphologies. The porous Al2O3 ceramics prepared from 70 wt.% to 90 wt.% solid loading sol-contained Al2O3 slurries and sintered at 1500 °C for 2 h have open porosities from 81.7% to 64.6%.  相似文献   

9.
Porous 0.8Na0.5Bi0.5TiO3-0.2K0.5Bi0.5TiO3 ceramics are fabricated via the pore-forming agent method with polymethyl methacrylate (PMMA) and stearic acid (SA) as pore forming agents, and microstructure observations demonstrate that the porosity, pore shape, and pore sizes can be controlled by the synthesis technology. The dielectric properties of porous ceramics are found not only correlated to the pore-matrix composite model, but also have a significant grain-size effect. Based on the Zener Theory, pining forces exerted by pores on the grain boundary are calculated, to explain the shape effect of pores on grain boundary migration. A phase-field simulation is carried out to investigate pore shape effect on the grain size regulation in porous polycrystalline, and simulation results are in good agreements with experiential results as well as theoretical calculations. Thus, a modified equation is proposed to predict the effective permittivity of the porous piezoelectric ceramics by considering effects of porosity, pore shape and grain size.  相似文献   

10.
In the processing of porous ceramics, shrinkage from green body to sintered compact during drying and sintering is one of the key concerns which affect microstructure and properties of porous ceramics. Through releasing gases from the burning of the pore forming agents, and volume expansion from the formation of low density resultants during sintering, the sintering shrinkage can be effectively compensated and near net size preparation can be achieved. Herein, near net size porous alumina-calcium aluminate ceramics with controllable shrinkage have been prepared using a combination of gelcasting and pore-forming agent process by adjusting the amount of CaCO3 and polymethyl methacrylate (PMMA) microspheres added. Al2O3 and CaCO3 were used as raw materials, PMMA microspheres were used as pore-forming agent, isobutylene/maleic anhydride copolymer (Isobam104) was used as gelling agent and dispersing agent. The effects of the addition amounts of CaCO3 and PMMA in the slurry on the phase composition, shrinkage, porosity, and strength of porous alumina-calcium aluminate ceramics were investigated. The results show that as the CaCO3 addition amount increases from 0 to 20 wt%, the shrinkage of the samples gradually decreases from 7.3% to −1.4%, and the consequent porosity increases from 58% to 66%, while the compressive strength increases from 5.9 to 15.5 MPa. When PMMA content increases from 10 to 50 wt%, the shrinkage of the samples decreases first and then increases, the porosity increases from 51% to 74%, and the compressive strength decreases from 12.5 to 5.3 MPa. The mechanisms for controlling shrinkages during preparation of porous alumina-calcium aluminate ceramics can be attributed to the following aspects: on one hand, gas release from burning of PMMA and decomposition of CaCO3 during sintering; on the other hand, volume expansion due to the formation of lower density calcium aluminates which come from the reactions between CaO and Al2O3. The near net size preparation technique is of great significance for the manufacture of porous ceramics since the subsequent machining cost can be effectively reduced.  相似文献   

11.
《Ceramics International》2022,48(22):33160-33166
As a lightweight refractory, porous Al2O3 ceramics are advocated in the iron and steel smelting industry because of their excellent resource-saving and low heat loss. However, the severely poor slag corrosion resistance and low mechanical strength caused by open pores shorten their service life. To solve this problem, Al2O3 ceramics with excellent closed-cell structure were fabricated by combining β-SiC pore-foaming and gel-casting techniques, and their pore structure and properties were tailored by tuning the content of β-SiC and sintering temperature. It is noted that the closed pores introduced in the dense Al2O3 matrix play a pivotal role in improving the corrosion resistance and mechanical strength while maintaining the lightweight. And the sample with closed porosity of 20.6% exhibited compressive strength of 640 MPa and flexural strength of 272 MPa. Meanwhile, its corrosion and penetration indices were at a low level, 6.3% and 54.8%, respectively.  相似文献   

12.
Pore-gradient Al2O3 foams were produced by gelcasting using the epispastic polystyrene (EPS) sphere template. This approach allows the design of porous ceramics with degree of pore connectivity and height of gradient layers via appropriate selection of the sizes and numbers of spheres. The fabrication processing of open-cell porous ceramics limited by polymeric sponge template, sharp cracks at the strut edges and closed pores can be resolved by this approach. To achieve the optimal manufacturing conditions of maintaining integrity of the network, the effects of solid loads, height of the slurry and the pre-removal of the polymeric foam template on the struts of the ceramic foams were studied. The results revealed that 55 vol.% Al2O3 slurries with 0.5 wt.% ammonium polyacrylate kept good fluidity for casting and avoided the inner inordinate shrinkage. Different shrinkage behavior of the top and bottom of the sample was effectively reduced due to approximately same water vapor diffusion areas on the top and bottom. The integrity of dendritic solidification structure maintained perfectly through template pre-removed in dichloromethane compared with direct heating.  相似文献   

13.
Porous Al2O3-based ceramics with improved mechanical strength and different pore size were fabricated using Al2O3 and SiO2 poly-hollow microspheres (PHMs) as raw materials by selective laser sintering (SLS). The effects of different contents of SiO2 PHMs on phase compositions, microstructures, mechanical properties and pore size distribution of the prepared ceramics were investigated. It is found that moderate content of SiO2 PHMs (≤30 wt%) could work as a sintering additive, which could enhance the bonding necks between Al2O3 PHMs. When the content of SiO2 PHMs increased from 0 wt% to 30 wt%, the compressive strength of Al2O3-based ceramics increased from 0.3 MPa to 4.0 MPa, and the porosity decreased from 77.0% to 65.0% with open pore size decreased from 52.0 μm to 38.3 μm. However, SiO2 PHMs could provide pores by keeping its integrity when the content of SiO2 PHMs increased to 40 wt%, which could result in the porosity increasing to 66.8% and pore size decreasing to 30.1 μm. Selective laser sintering of different kinds of ceramic PHMs is a feasible method to fabricate porous ceramics with complex shape, controllable pore size and improved properties.  相似文献   

14.
Low-cost and environment-friendly MgO was used as a new gelling and consolidating agent to fabricate porous Al2O3-based ceramics via a gel casting routine. Effects of 800°C calcined additions of MgO (.5, 1.0, 1.5, and 2.0 wt%, respectively) on open porosity (OP), pore size distribution, gas flux, and microstructure of the porous ceramics were investigated deliberately. The experimental results showed that 800°C calcined MgO exhibits excellent gelling and consolidating performance at 80°C, mainly owing to the hydration reaction between MgO and H2O and thus results in high-quality porous Al2O3-based ceramics without deformation and cracking. The Al2O3–water suspensions with different MgO additions have good flowability at room temperature. Moreover, water absorption, open porosity, and gas flux of the as-prepared porous ceramics increase remarkably with rising of MgO addition. Furthermore, MgO addition significantly suppresses the abnormal growth of Al2O3 grains, and thus the microstructure of the porous Al2O3-based ceramics becomes more uniform. This technique of gel casting using MgO as a new gelling and consolidating agent offers an alternative routine for a large-scale production of porous ceramics.  相似文献   

15.
In this paper, we first reported that porous SiC–Al2O3 ceramics were prepared from solid waste coal ash, activated carbon, and commercial SiC powder by a carbothermal reduction reaction (CRR) method under Ar atmosphere. The effects of addition amounts of SiC (0, 10, 15, and 20 wt%) on the postsintering properties of as-prepared porous SiC–Al2O3 ceramics, such as phase composition, microstructure, apparent porosity, bulk density, pore size distribution, compressive strength, thermal shock resistance, and thermal diffusivity have been investigated. It was found that the final products are β-SiC and α-Al2O3. Meanwhile, the SEM shows the pores distribute uniformly and the body gradually contacts closely in the porous SiC–Al2O3 ceramics. The properties of as-prepared porous SiC–Al2O3 ceramics were found to be remarkably improved by adding proper amounts of SiC (10, 15, and 20 wt%). However, further increasing the amount of SiC leads to a decrease in thermal shock resistance and mechanical properties. Porous SiC–Al2O3 ceramics doped with 10 wt% SiC and sintered at 1600°C for 5 hours with the median pore diameter of 4.24 μm, room-temperature compressive strength of 21.70 MPa, apparent porosity of 48%, and thermal diffusivity of 0.0194 cm2/s were successfully obtained.  相似文献   

16.
《Ceramics International》2022,48(20):30356-30366
Calcium hexaluminate (CA6) porous ceramics were prepared by gel-casting method, with α-Al2O3 and CaCO3 as raw materials and polymethyl methacrylate (PMMA) microspheres as pore-forming agent. The effects of the amount of pore-forming agent PMMA microspheres on the phase composition, bulk density, apparent porosity, flexural strength, microstructure, thermal shock stability and thermal conductivity of CA6 porous ceramics were systematically studied. The pores of CA6 porous ceramics are mainly formed by the burning loss of PMMA microspheres and the decomposition of organic matter. Adding an appropriate amount of PMMA microspheres as pore-forming agent has a positive effect on the thermal shock stability of CA6 porous ceramics. When the amount of pore-forming agent is 15 wt%, the volume density of CA6 porous ceramics is 1.33 g/cm3, the porosity is 63%, the flexural strength is 13.9 MPa, the thermal shock times can reach 9 times, and the thermal conductivity is 0.293 W/(m·K), which can meet the application in refractory, ceramics or high temperature cement industries.  相似文献   

17.
In this work, Al2O3 honeycomb ceramics with unidirectionally aligned channels were fabricated by the ionotropic gelation process of alginate/Al2O3 suspensions. By heating the bottom of the suspension container during the gelation step, the heat energy conducted upward from foot to the top surface of the slurry, which has shortened the gelation time from 48 to 10?h and improved efficiency dramatically. Meanwhile, as the heating temperature increased from 25 to 40°C, the porosity of Al2O3 honeycomb ceramics remained unchangeable with the pore size decreasing from 163 to 79?μm for the increasing opportunities for forming capillaries in the primary membrane. By the integrated effect of unidirectional pore channels and dense pore walls, both the compressive strength and water permeability of the sintered samples were higher than those of Al2O3 foam ceramics.  相似文献   

18.
In this paper we show examples of microstructures of porous oxide ceramics prepared by traditional slip casting (TSC) and starch consolidation casting (SCC) and present results obtained using different microstructural characterization techniques; Archimedes method (open and total porosity), shrinkage measurement, mercury intrusion porosimetry (pore size distribution) and microscopic methods – optical microscopy with microscopic image analysis (pore size distribution) and scanning electron microscopy (detailed investigation of the local microstructure). In particular, microstructures are compared for porous ceramics from the system Al2O3–ZrO2 prepared with rice and corn starch. It is shown that maximum values of the total porosity of porous ceramics prepared with starch as a pore-forming agent were approx. 50%. A major finding by using SEM with respect to starch-produced porous ceramics is the existence of pore fillings in the form of small sintered ceramic shell inside the pores, as a result of starch granule shrinkage during the drying and burn-out steps.  相似文献   

19.
In this study, needle-shape TiO2 fibers were successfully fabricated inside a micro-channeled Al2O3-ZrO2 composite porous membrane system using sol-gel method. The micro-channeled Al2O3-ZrO2 composite was fabricated using the fibrous monolithic (FM) process. Pure anatase phase TiO2 was crystallized from the as-coated amorphous phase during calcination at 510 °C. The TiO2 fibers grew on the surface frame of the micro-channeled Al2O3-ZrO2 composite membrane and fully covered the inside of the micro-channeled pores. The specific surface area of the TiO2 coated membrane system was dramatically increased by over 100 fold compared to that of the non-coated system. The photocatalytic activity of the membrane was also assessed and was shown to very effectively convert organic materials. Thus, this novel membrane holds promise for use as an advanced filtration system.  相似文献   

20.
This paper focuses on investigating the technical potential for fabricating porous ceramic bioscaffolds for the repair of osseous defects from trauma or disease by inverse replication of three–dimensional (3–D) printed polymer template. Si3N4 ceramics with pore structure comprising orderly–interconnected big pore channels and well–distributed small pores are successfully fabricated by a technique combining 3–D printing, vacuum suction filtration and oxidation sintering. The Si3N4 ceramics fabricated from the Si3N4 powder with addition of 10?wt% talcum by sintering at 1250?°C for 2?h have little deformation, uniform microstructure, low linear shrinkage of 4.1%, high open porosity of 58.2%, relatively high compression strength of 6.4?MPa, orderly–interconnected big pore channels and well–distributed small pores, which are promising bioscaffold in the field of bone tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号