首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Microstructures of ZrB2 ceramics consolidated by hot-pressing and spark plasma sintering were investigated by transmission electron microscopy (TEM), combining energy dispersive X-ray spectroscopy (EDX). The microstructures of both ceramics were compared. Amount of impurities was lower for ZrB2 consolidated by spark plasma sintering than for hot-pressed ZrB2. In particular, oxygen impurity was not detected even at the grain-boundaries in ZrB2 consolidated by spark plasma sintering. The cleaning effect generated on the powder surfaces during spark plasma sintering cycle was displayed. In addition, dislocations were present only in the spark plasma sintered ZrB2 ceramic, as a result of localized high stresses.  相似文献   

2.
Taguchi design of experiments methodology was used to determine the most influential spark plasma sintering (SPS) parameters on densification of TiB2–SiC ceramic composites. In this case, four processing factors (SPS temperature, soaking time, applied external pressure and SiC particle size) at three levels were examined in order to acquire the optimum conditions. The statistical analysis identified the sintering temperature as the most effective factor influencing the relative density of TiB2–SiC ceramics. A relative density of 99.5% was achieved at the optimal SPS conditions; i.e. temperature of 1800?°C, soaking time of 15?min and pressure of 30?MPa by adding 200-nm SiC particulates to the TiB2 matrix. The experimental measurements and predicted values for the relative density of composite fabricated at the optimum SPS conditions and reinforced with the proper SiC particle size were almost similar. The mechanisms of sintering and densification of spark plasma sintered TiB2–SiC composites were discussed in details.  相似文献   

3.
《Ceramics International》2023,49(7):10748-10755
Ultra-high temperature HfB2 ceramic with nearly full densification is achieved by using gradient sintering process of SPS without any additives. The effect of the sintering temperature on the densification behavior, relative density, microstructure, mechanical and thermionic properties is systematically investigated. The results show that the fast densification of HfB2 ceramic occurs at the heating stage, and the highest relative density of 96.75% is obtained at T =1950 °C, P = 60 MPa and t =10min. As the temperature is increased from 1800 to 1950 °C, the grain size of HfB2 increases from 6.12 ±1.33 to 10.99 ± 2.25 μm, and refined microstructure gives the excellently mechanical properties. The highest hardness of 26.34 ±2.1GPa, fracture toughness of 7.12 ± 1.33 MPa m1/2 and bending strength of 501 ±10MPa belong to the HfB2 ceramic obtained at T =1950°C. Moreover, both the Vickers hardness and fracture toughness obey the normal indentation size effect. HfB2 ceramic also exhibits the thermionic emission characterization with the highest current density of 6.12 A/cm2 and the lowest work function of 2.92 eV.  相似文献   

4.
It was shown that spark plasma sintered silicon nitride with a high content of Al2O3 and MgO consists of α and β silicon nitride, the main phase being α silicon nitride. The increase in the sintering temperature did not lead to significant changes in the phase composition as occurs in silicon nitride added with Al2O3-Y2O3. It was found that increasing in SPS temperature above 1650 °C leads to an insignificant increase in the density. A complex shaped equiaxed grain microstructure was shown in both cases. However, doping with aluminum and yttrium oxides allows obtaining an elongated grain microstructure. The Hall-Petch effect was observed for the microhardness of the investigated SPSed silicon nitride. The microhardness of the described ceramics was rather high and more than 1900 HV compared to the pressureless sintered at 1800 °C silicon nitride with the microhardness equal to 1511 HV.  相似文献   

5.
One kind of TiB2/TiC composite ceramic tool material toughened by graphene nanosheets was fabricated by spark plasma sintering. Effects of graphene nanosheets on microstructure, mechanical properties and toughening mechanisms were investigated. The results indicated that TiB2/TiC with 0.1?wt% graphene nanosheets sintered at 1800?°C with the holding time of 5?min obtained full densification and optimal mechanical properties. Its fracture toughness and Vickers hardness were 7.9?±?1.2?MPa?m1/2 and 20.0?±?0.7?GPa, respectively. Excess graphene nanosheets had no effects to toughness improvement. Fracture toughness was increased by 31.7% in comparison with the TiB2/TiC without graphene nanosheets. Toughness enhancement mainly benefited from crack bridging, also slip-stick effect of graphene made it hard to detach and effectively restrained crack extension.  相似文献   

6.
The effects of TiN and nano-TiB2 additions to titanium carbonitride (TiCN-WC-Cr3C2-Co)-based cermets processed by spark plasma sintering (SPS) are identified. The TiN and nano-TiB2 additions were varied from 0 to 15?wt% to ascertain their combined effects on the mechanical properties. Scanning electron microscopy (SEM) revealed the combined chemical composition of the new phases formed during sintering. The hardness and fracture toughness values were recorded. Increase in the fracture toughness value with TiN addition was more compared with the nano-TiB2 addition. In contrast, the hardness values were higher for the cermets formed with the nano-TiB2 addition. Sintered bodies were made as tool inserts that meet SNGN120408 standard tool configuration. Using these tools, EN24 work-piece was turned at different cutting speeds of 11.87, 29.68, 71.46, 163.88?m/min under conditions of dry cutting. The performance was evaluated. Cutting force as well as surface roughness of the work-piece after machining was measured. For all cutting tools, initially the cutting force was high but it tended to decrease at higher cutting speeds. In addition, for all the tools, at higher cutting tools the surface roughness values were uniformly minimal. The cermet with a composition 55TiCN-15WC-10Co-5Cr3C2–15nanoTiB2 (all in wt%), in particular, showed a balanced enhancement in both fracture toughness (6.8?MPa?m1/2) and Vickers hardness (18?GPa) values. The surface finish of the work-piece was also the best after machining when a tool of the above composition was used.  相似文献   

7.
《Ceramics International》2019,45(11):13799-13808
Almost full density (>99% theoretical density (ρth)) was achieved for ZrB2-20vol% SiC-Xwt.% Ta (X = 2,5, 5 and 10) composites after Spark Plasma Sintering (SPS) (Temperature: 1900 °C, Pressure: 50 MPa; Time: 3 min). The microstructure of ZrB2-based composites exhibited core-rim structure and it consists of major crystalline phases (ZrB2 core, (Zr, Ta)B2 rim, SiC), minor amounts of ZrO2 and (Zr, Ta)C solid solution phases. Both the specific weight (from 22.91 to 18.77 mg/cm2) and oxide layer thickness (401–195 μm) of ZrB2-20vol% SiC composites decreased with increasing addition of Ta after the isothermal oxidation at 1500 °C for 10 h in air. The cross-sectional microstructure of oxidized samples displayed presence of a stack of three distinctive layers, which includes thick dense SiO2 top layer, SiC depleted intermediate layer and unreacted bulk. The present work clearly demonstrated the advantage of tantalum addition in improving the oxidation resistance of ZrB2-20vol% SiC.  相似文献   

8.
《Ceramics International》2020,46(3):2612-2617
To promote the densification and therefore the mechanical properties of boride-based ceramics, MgO was added as sintering aid into Os0.9Re0.1B2 powders for densification by using spark plasma sintering (SPS). The Os0.9Re0.1B2 powders were synthesized by mechanochemical method from powder mixture of Os, Re and amorphous B. The role of MgO on densification, phase composition, microstructure and mechanical properties (hardness, fracture toughness and wear behavior) were studied by using X-ray diffraction (XRD), scanning electron microscope (SEM) with energy-dispersive spectroscopy (EDS), micro indentation and ball-on-disk tribometer. The results show that, with the introduction of MgO as sintering aid, the relative density of the Os0.9Re0.1B2 ceramic samples increased. When the MgO content reached 9 wt%, the as-sintered sample is almost fully dense. No obvious regularity was found from the samples with the addition of different content of MgO. Vickers hardness values of the samples with 0, 3 wt% and 9 wt% MgO are found to be very close with each other within the experimental error (~30 GPa), while the sample with the addition of 6 wt% MgO exhibits the highest hardness of ~35 GPa. The fracture toughness of the samples is decreased slightly with the addition of MgO. The friction coefficient and wear rate of the sample with the addition of 6 wt% MgO was also found to be the lowest among all samples, which indicate best wear resistance. As a whole, with the addition content of 6 wt% MgO, the Os0.9Re0.1B2 ceramic sample performs relatively excellent mechanical properties among four groups of samples.  相似文献   

9.
Polycrystalline Mo4Y2Al3B6 ceramic (92.84 wt% Mo4Y2Al3B6 and 7.16 wt% MoB) was prepared by spark plasma sintering at 1250 ℃ under 30 MPa using Mo, Y, Al, and B as starting materials. The dense sample obtained has a high relative density of 96.6 %. The average thermal expansion coefficient is 8.38 × 10?6 K?1 in the range of 25–1000 ℃. The thermal diffusivity decreases from 6.50 mm2/s at 25 °C to 4.33 mm2/s at 800 °C. The heat capacity, thermal conductivity, and electrical conductivity are 0.30 J·g?1·K?1, 11.73 W·m?1·K?1, and 0.66 × 106 Ω?1·m?1 at 25 °C, respectively. Vickers hardness with increasing load in the range of 10–300 N at room temperature decreases from 10.82 to 9.49 GPa, and the fracture toughness, compressive strength, and flexural strength are 5.14 MPa·m1/2, 1255.14 MPa, and 384.82 MPa, respectively, showing the promising applications as structural-functional ceramics.  相似文献   

10.
The effects of ball milling of starting powder and post-annealing of spark plasma sintered (SPSed) Lu2O3 on its microstructure and optical property were investigated. When ball-milled powder was used, the SPSed Lu2O3 was found to have a larger grain size with wider distribution and lower transparency than in the case using powder without ball milling. After annealing at 1323 K in air, the Lu2O3 that was SPSed using ball-milled powder became colorless, had a higher transmittance in the visible spectrum than the case where as-received powder was used, and exhibited transmittances of 71.4% and 81.6% for wavelengths of 550 and 2000 nm, respectively.  相似文献   

11.
《Ceramics International》2020,46(6):7510-7516
In this study, zirconia-toughened alumina (ZTA) samples with different amounts of CeO2 were prepared by the spark plasma sintering method. The phase composition and microstructure of the samples were examined by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The addition of CeO2 results in grain refinement and density increase; moreover, CeO2 stabilises the high-temperature metastable phase. As the amount of CeO2 reaches 7 wt%, a new CeAl11O18 phase appears. The Vickers hardness, modulus, and fracture toughness of the samples depend to a large extent on the grain size, relative density, and existence of the second phase. Among the composites, that with 5 wt% CeO2 shows the best performance with the highest values of relative density, Vickers hardness, and fracture toughness: 96.51%, 1688 HV, and 9.91 MPa.√m, respectively.  相似文献   

12.
The densification behaviors of Al2O3–Cr2O3/Cr3C2 nanocomposites prepared by a Spark Plasma Sintering (SPS) were investigated in this work. The initial powders used for sintering were Al2O3–Cr2O3, which were prepared by metal organic chemical vapor deposition (MOCVD) in a spout bed. Different colors of the compacts such as green, purple and black were observed after densification process at different SPS temperatures from 1200 °C to 1350 °C. These changes of color were relevant to the existence of secondary phase of green Cr2O3, pink solid solution of Cr2O3–Al2O3 and black Cr3C2, which were formed under the different SPS temperature. The secondary phase of Cr2O3 retarded the processing of densification for spark plasma sintering at 1200 °C. The Cr2O3 reacted with Al2O3 to form solid solution of Cr2O3–Al2O3 and with carbon to form Cr3C2 as sintering temperature increased to 1350 °C. The characteristics of high heating rate, shorter sintering time for SPS and the formation of secondary phase of Cr3C2 effectively reduced the substrate's grain growth, making Al2O3–Cr2O3/Cr3C2 nanocomposites with small grain size.  相似文献   

13.
The main objective of this work is to compare the hardness, fracture toughness, and optical transparency of MgAl2O4 spinel (magnesium aluminate), MgAl2O4 spinel/ Si3N4 nanocomposite, and the heat-treated spinel/Si3N4 nanocomposite. For this purpose, the commercial spinel nanopowder and the laboratory-made spinel/ Si3N4 nanocomposite powder were sintered using spark plasma sintering (SPS). A heat treatment at 1000?°C for 4?h was carried out on the as-sintered nanocomposite. The field emission scanning electron microscopy (FESEM), Energy dispersive X-ray (EDX) mapping, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Nanoindentation, and Vickers microhardness analyses were used to determine microstructure, elemental analysis, functional group, hardness, and indentation toughness of the samples. The results showed that the hardness and toughness of the heat-treated sample are more than those of the as-SPSed nanocomposite as much as 15.7% and 25.7%, respectively. Also, the values of optical transmission of the nanocomposite sample in the visible range (400–800?nm) and infrared region (800–2000?nm) were lower than those of pure spinel.  相似文献   

14.
A high transmittance/small grain size combination for pure spinel ceramics from commercially available nanopowders without sintering aids can be obtained by SPS sintering. By using a low heating rate ≤10 °C/min and a sintering temperature ≤1300 °C, a transparent polycrystalline MgAl2O4 spinel was fabricated by SPS with an in-line transmission of 74% and 84% for 550 nm (visible) and 2000 nm (NIR) wavelengths respectively. A small average grain size of about 250 nm was obtained and the pores located at the multiple grain junctions have a mean size of about 20 nm. The high in-line transmission is linked not only to the low residual porosity but particularly to the very small size of pores.  相似文献   

15.
Due to the sensitivity of nanopowders and the challenges in controlling the grain size and the density during the sintering of ceramics, a systematic study was proposed to evaluate the densification and the microstructure of ZnO ceramics using spark plasma sintering technique. Commercially available ZnO powder was dried and sintered at various parameters (temperature (400–900?°C), pressure (250–850?MPa), atmosphere (Air/Vacuum) etc.). High pressure sintering is desirable for maintaining the nanostructure, though it brings a difficulty in obtaining a fully dense ceramic. Whereas, increasing the temperature from 600 to 900?°C results in fully densified ceramics of about 99% which shows to have big impact on the grain size. However, a high relative density of 92% is obtained at a temperature as low as 400?°C under a pressure of 850?MPa. The application of pressure during the holding time seems to lower the grain size as compared to ceramics pressed during initial stage (room temperature).  相似文献   

16.
BaTiO3-Cu composite powders were prepared via an alkoxide-mediated synthesis approach. As-synthesized BaTiO3 nanoparticles were as small as 40 nm and coated partially larger Cu particles of approximately 1 μm in size. Thermogravimetric analysis (TGA) and dilatometry revealed a gradual increase in weight loss and retarded shrinkage with the increase of Cu addition. BaTiO3-Cu composites were successfully densified by spark plasma sintering (SPS). The microstructures show an average grain-size for BaTiO3 of around 100 nm and a crystallite size of about 1 μm for the Cu inclusions. The AC conductivity of the BaTiO3-Cu composites increased with increasing Cu content or with temperature. The dominant electrical conduction mechanism in SPSed BaTiO3-Cu composites changed from migration of oxygen vacancies to band conduction of trapped electrons in oxygen vacancies with the increase of Cu content.  相似文献   

17.
《Ceramics International》2019,45(15):18943-18950
In the present research, polycrystalline magnesium oxide (MgO) bodies were fabricated using spark plasma sintering (SPS) at different temperatures and times from MgO nanopowder. Microstructural development, densification, and optical properties were investigated during SPS. The critical pressure of plastic deformation of the MgO compacts during sintering was also analyzed. The results showed that the plastic deformation phenomenon had a profound effect on the grain size and optical properties. In addition, the optical properties and microstructure of MgO bodies were strongly dependent on sintering temperature and time. Full-dense infrared-transparent magnesium oxide with a relative density of 99.99% was prepared at 1200 °C for 5 min under the pressure of 80 MPa. The spark plasma sintered MgO demonstrated the highest infrared transmittance of 72% in the 3–7 μm wavelength range, which was comparable with the values reported for MgO single crystal.  相似文献   

18.
In the present work, coarse grain cerium stabilized zirconia bulk ceramic was prepared by spark plasma sintering technique. The relatively high temperature of 2000 °C used for sintering led to enormous grain growth up to approximately 100 μm. Sintering at high temperatures and in the vacuum caused oxygen depletion and thus transformation from tetragonal to cubic phase during the sintering process. The tetragonal phase was recovered by annealing at 1400 °C in air. This led to a change in fracture behavior. Mostly transgranular fracture of the cubic phase was changed to intergranular fracture after recovering the tetragonal phase. On the intergranular fracture surface, twinning-like structure and structures similar to antiphase domain were observed.Mechanical properties represented by indentation hardness of prepared samples were evaluated.  相似文献   

19.
Self-healing and oxidation of spark plasma sintered Ta2AlC was investigated using a newly developed wedge loaded compact specimen to determine strength recovery in a single specimen. Previous work had predicted dominant Al oxidation leading to dense and strong reaction products to result in favourable healing properties. However, crack-gap filling and strength recovery of Ta2AlC were not achieved by oxidation at 600 °C. Oxidation below 900 °C in synthetic and atmospheric air resulted in porous Ta-oxides, with no Al2O3 formation. DTA up to 1200 °C revealed a two-step reaction process with the final products Ta2O5 and TaAlO4. The study shows that the kinetics may overrule the self-healing MAX-phase design criteria based on thermodynamics.  相似文献   

20.
This research explores the sintering behavior and microstructure of ZrB2-based materials containing graphene nano-platelets (GNPs) and SiC whiskers (SiCw). Spark plasma sintering (SPS) process at 1900 °C was implemented to sinter the specimen, leading to a composite with 100% relative density. High-resolution transmission electron microscopy (HRTEM), field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), field emission-electron probe microanalyzer (FE-EPMA), and high-resolution X-ray diffractometry (HRXRD) were employed to study the SPSed sample, along with the thermodynamics predictions. According to the HRXRD result and microstructural observations, the sintering process was non-reactive, which was endorsed with the XPS analysis. Furthermore, graphene presented a beneficial role for eradicating the oxide impurities in the sample during the sintering. Such oxide impurities were reduced to the original phases of SiC and ZrB2, contributing to porosity removal. Nanostructural investigations revealed the formation of ultrathin amorphous interfaces (~10 nm) between ZrB2/graphene phases, disordered atomic planes in graphene platelets, and dislocations in ZrB2 grains. One reason for generating crystalline defects in the microstructure was found out to be the mismatches amongst the elastic properties of the available compounds in the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号