首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2015,41(4):5734-5748
Polycrystalline samples of α-AgY1−xGdx(WO4)2 with x=0, 0.005, 0.01, 0.025, 0.05, 0.1, 0.2, and 1 have been prepared by a solid state reaction method and the influence of Gd3+ substitution for Y3+ on microstructure, thermal and magnetic properties was investigated. The X-ray diffraction analysis showed the phases to crystallize in the monoclinic symmetry, space group C2/m. A reversible monoclinic to tetragonal phase transition occurs in AgY1−xGdx(WO4)2 and strongly depends on Gd3+ ion concentration. Electron paramagnetic resonance (EPR) spectra of Gd3+ ions showed non-monotonous dependence of interaction strength on gadolinium concentration. Magnetic measurements showed paramagnetic behavior and strong increase of magnetic moment as the yttrium content decreases.  相似文献   

2.
《Ceramics International》2016,42(6):6673-6681
Polycrystalline samples of scheelite-type Cd1−3xxGd2x(MoO4)1−3x(WO4)3x solid solution with limited homogeneity (0<x≤0.25) and cationic vacancies (denoted as ⌷) have successfully prepared by a high-temperature annealing of CdMoO4/Gd2(WO4)3 mixtures composed of 50.00 mol% and less of gadolinium tungstate. Initial reactants and obtained ceramic materials were characterized by XRD, simultaneous DTA–TG, and SEM techniques. A phase diagram of the pseudobinary CdMoO4–Gd2(WO4)3 system was constructed. The eutectic point corresponds to 1404±5 K and ~70.00 mol% of gadolinium tungstate in an initial CdMoO4/Gd2(WO4)3 mixture. With decreasing of Gd3+ content in a CdMoO4 framework, the melting point of Cd1−3xxGd2x(MoO4)1−3x(WO4)3x increases from 1406 (x=0.25) to 1419 K (x=0.0833), and next decreases to 1408 K (x=0). EPR method was used to identify paramagnetic Gd3+ centers in Cd1−3xxGd2x(MoO4)1−3x(WO4)3x for different values of x parameter as well as to select biphasic samples containing both Cd0.250.25Gd0.50(MoO4)0.25(WO4)0.75 and Gd2(WO4)3.  相似文献   

3.
《Ceramics International》2017,43(10):7839-7850
New Pb1-3xxGd2x(MoO4)1-3x(WO4)3x (0<x≤0.1774) and Pb1-3xxGd2xWO4 (0<x≤0.1154, ⌷ denotes vacancy) solid solutions were synthesized via solid state reaction route and citrate-nitrate combustion method. XRD and SEM data showed that as-prepared ceramics crystallize in the tetragonal scheelite type symmetry (space group I41/a) with the crystallite size varying between ~10 and ~40 µm (solid state method) or ~500 nm and 2 µm (combustion synthesis). A change in lattice constants (a and c), lattice parameter ratio c/a and progressive deformation of MoO4/WO4 tetrahedra with an increase of Gd content was observed. The melting point of each Gd-doped sample is lower than the melting point of adequate scheelite matrix. Ceramics under study are insulators with indirect band gap (Eg)>3 eV. EPR investigation revealed a difference among spectra obtained for varied gadolinium content, whereas synthesis method has no influence on EPR results.  相似文献   

4.
The manganese doped calcium molybdato-tungstates with the formula of Ca1-xMnx(MoO4)0.50(WO4)0.50 (x = 0.01, 0.03, 0.05, 0.10, 0.125, and 0.15) were successfully obtained by two-step synthesis using in both steps a solid state reaction route. All ceramics show scheelite-type tetragonal structure with space group I41/a. The electrical and magnetic studies within the temperature range of 2–300 K showed a weak p-type electrical conductivity and the paramagnetic state of Mn-doped ceramic materials. With increasing Mn content in samples under study, a change in the short-range interactions from ferromagnetic to antiferromagnetic as well as an increase in the orbital contribution to the magnetic moment, resulting in a strong spin-orbit coupling, were observed. The Brillouin procedure was used to estimate the Landé factor.  相似文献   

5.
《Ceramics International》2017,43(18):16376-16383
Phase composition, structure stability, cations valance state, and relaxor-like-dielectric behavior of Sr(1–3/2x)CexTiO3 (SCT, x = 0.3, 0.4) solid solution were investigated systematically. The Sr(1–3/2x)CexTiO3 samples appear to be single phase within the detection limits of the technique, whereas the solid solution exhibits the higher angle doublet and triplet peak splitting associated with (200) and (321). X-ray photoelectron spectroscopy (XPS) analysis showed that the Ce substitution induces change in the cations valance state upon oxygen vacancies formation. The system exhibits features of low-frequency dependent relaxor-like-dielectric behavior rather than sharp frequency-independent anomalies. Besides this, two kind of relaxations were detected in the temperature range ≥ 350 °C. According to the electric modulus and ac conductivity analysis, the relaxor-like-dielectric behavior results from the long-range conduction associated with ionized vacancies and mixed state of Ti3+/4+ and Ce3+/4+ cations.  相似文献   

6.
Polar relaxation processes in Lanthanum doped SrTiO3 (STO) ceramics, with general formulae Sr(1−1.5x)LaxTiO3, were studied by undertaking field-induced thermally stimulated currents measurements below room temperature.The experimental results obtained for doped ceramic (x = 0.0133) were analysed by using dipolar and space-charge relaxation thermally stimulated depolarization currents (TSDC) models in order to determine the nature of the relaxation processes involved.Our results reveal the existence of different relaxation processes in the temperature range 60–300 K. Whereas at low temperature, a relaxation mechanism of a dipolar type was disclosed within the temperature interval centred around 100 K, a space-charge relaxation process could be identified in the temperature range 120–300 K. The temperature dependence of the relaxation parameters will be also discussed in detail.  相似文献   

7.
SrTi1?3x(CuxNb2x)O3 (x?=?0.05, 0.1, 0.15 and 0.2) ceramics were synthesized using a solid-state reaction method at 1400?°C in air. Their structures, valence states, conduction mechanisms and dielectric properties were investigated in detail. Fine grains and vibration modes of the samples related to the doping effects were observed. A distorted pseudo-cubic structure was confirmed by XRD and Raman spectroscopy. All ceramics exhibited a colossal dielectric constant and dielectric relaxations. The dielectric constant in the low- and high-frequency ranges for x?=?0.05 and 0.1 was ascribed to the contribution of the grain boundary and grain, respectively, and the electrode polarization was significant at x?=?0.15 and 0.2. The dielectric relaxation peaks obeyed the T?1/4 law at low temperature for all samples, confirming the polaron relaxation process. The electric modulus analysis confirmed that low-temperature dielectric relaxation was related to the grain response, and the electric conduction exhibited the same behavior with the dielectric relaxation. The variable-range-hopping conduction indicated a highly distorted structure and the localization of carriers in SrTi1?3x(CuxNb2x)O3, which was consistent with the XRD and Raman results. The mixed-valence structure of Cu was identified by XPS, and the polaron hopping between the mixed-valence Cu ions was supposed to be responsible for the dielectric relaxation and electric conduction.  相似文献   

8.
The limited scheelite type Cd1−3xxGd2xMoO4 solid solution, where 0 < x  0.25 and □ are cationic vacancies have been successfully synthesized by high-temperature annealing of CdMoO4/Gd2(MoO4)3 mixtures composed of 50.00 mol.% and less of Gd2(MoO4)3. The obtained materials as well as CdMoO4 and Gd2(MoO4)3 were characterized by powder XRD, DTA–TG, DSC, and SEM techniques. A phase diagram of the pseudobinary CdMoO4–Gd2(MoO4)3 system was constructed. The eutectic point corresponds to 1350 ± 5 K and ∼70.00 mol.% of Gd2(MoO4)3 in an initial CdMoO4/Gd2(MoO4)3 mixture. With decreasing of Gd3+ amount in the crystal lattice of CdMoO4, a melting point of the Cd1−3xxGd2xMoO4 solid solution increases from 1351 (x = 0.25) to 1408 K (x = 0). EPR method was used to identify the paramagnetic Gd3+centers in Cd1−3xxGd2xMoO4 for different values of x parameter as well as to select biphasic samples containing both Cd0.25000.2500Gd0.5000MoO4 and Gd2(MoO4)3.  相似文献   

9.
Lithium ion conductors, Li3−2x(In1−xZrx)2(PO4)3 (0≦x≦0·20), were synthesized by a solid state reaction. A superionic conductive phase of Li3In2(PO4)3 was stabilized down to room temperature, assisted by the substitution of Zr4+ for In3+ sites of Li3In2(PO4)3. TG-DTA analysis indicated no phase transition in the samples with x superior to 0·05. The substituted samples showed much higher ionic conductivity by a couple of magnitude than that of Li3In2(PO4)3. In particular, the highest conductivity at room temperature was 1·42×10−5 Scm−1 for Li2·8(In0·9Zr0·1)2(PO4)3. Thin films with the composition of Li2·8(In0·9Zr0·1)2(PO4)3 was prepared by a sol–gel method. A coating solution was made from lithium isopropoxide, indium isopropoxide, zirconium isopropoxide and diphosphorus pentaoxide. Well crystallized films were obtained on silicon dioxide and quartz glass substrates by dropping the coating solution, followed by firing over 873 K. In the temperatures above 473 K the lithium ionic conductivity of the film was slightly higher than that of sintered samples prepared by the solid state reaction at 1373 K.  相似文献   

10.
(0.95–x) BaTiO3–0.05 BiYbO3x BiFeO3 (x?=?0, 0.01, 0.02, and 0.04) (abbreviated as (0.95–x) BT–0.05 BY–x BFO) ceramics were fabricated by conventional sintering (CS) and microwave sintering (WS) methods. Effects of sintering method and BFO dopant on the microstructure and electric properties of (0.95–x) BT–0.05 BY–x BFO ceramics were comparatively investigated. X-ray diffraction showed that all CS and WS samples presented a single perovskite phase. It was also found that WS ceramics possessed denser microstructure and finer grains compared to CS samples as indicated by the surface morphology characterization. Dielectric measurements revealed that all samples exhibited the weak relaxation behavior; however, the degree of relaxation behavior of BT–BY based ceramic could be strengthened by addition of BFO and by WS method. Moreover, the temperature and frequency stability could be improved with doped BFO. The density of 0.93BT–0.05BY–0.02BFO ceramic was found to be the largest while that of 0.94BT–0.05BY–0.01BFO ceramic was the smallest, thus, the dielectric constant of 0.93BT–0.05BY–0.02BFO was significantly larger than that of 0.94BT–0.05BY–0.01BFO and 0.94BT–0.05BY–0.04 BFO ceramics. minimum dielectric constant of (0.95–x) BT–0.05 BY–x BFO ceramic was obtained at x?=?0.01. Ferroelectric measurements indicated that all samples showed the slim hysteresis loop. The remnant polarization (Pr) and coercive field (EC) of (0.95–x) BT–0.05 BY–x BFO ceramics first decreased and then increased with increasing x,the minimum values were obtained at x?=?0.01. Moreover, Pr and EC of WS ceramics were slightly larger than those of CS ceramics, indicating that higher density and larger grain sizes contributed to enhancing the ferroelectric characteristic. These findings indicate that addition of moderate amount of BFO and use of WS technique can strengthen the degree of relaxation behavior and improve the ferroelectric properties of BT–BY based ceramics.  相似文献   

11.
《Ceramics International》2023,49(1):944-955
Ca1-3x-yMny[]xNd2x(MoO4)1-3x(WO4)3x molybdato-tungstates (? denotes vacant sites) were successfully synthesized by high-temperature solid-state reaction. New materials crystallize in scheelite-type structure within whole homogeneity range of solid solution (x ≤ 0.2000 and y = 0.0200). Morphological features and particle size distribution were investigated by SEM and laser diffraction methods, respectively. Spectroscopic measurements in the UV–vis range was carried out to determine optical direct band gap (Eg), Urbach energy (EU) and confirmation of structural disorder. Refractive index (n) was calculated using four different models. Magnetic studies revealed paramagnetic behavior with long-range ferrimagnetic and short-range antiferromagnetic interactions. New materials showed weak n-type electrical conductivity and thermoelectric power factor (S2σ) that strongly depends on Nd3+ ions content. Dielectric parameters, i.e. relative permittivity r) and energy loss (tanδ) are insignificantly dependent on Nd3+ ions concentration. These effects were considered in terms of structural defects, thermal activation of charge carriers, and the Maxwell–Wagner polarization.  相似文献   

12.
Stoichiometric phosphors LiGd1−xEux(PO3)4(x=0, 0.2, 0.4, 0.6, 0.8, 1.0) were synthesized via traditional solid state reactions. The X-ray powder diffraction measurements show that all prepared samples are isostructural with LiNd(PO3)4. Eu3+ doped phosphors can emit intense reddish orange light under the excitation of near ultraviolet light from 370 to 410 nm. The strongest two at 591 and 613 nm can be attributed to the transitions from excited state 5D0 to ground states 7F1 and 7F2, respectively. The typical chromaticity coordinates (x=0.620, y=0.368) of Eu3+ doped phosphors are in red area. The recorded absorbance spectra indicate that there is effective absorbance in the near UV region for all Eu3+ doped samples. Present research indicates that LiGd1–xEux(PO3)4 is a promising phosphor for white light-emitting diodes.  相似文献   

13.
《Ceramics International》2015,41(6):7626-7631
Ti3Si(1−x)AlxC2 (x=0–1) quarternary MAX phase materials were prepared by spark plasma sintering of TiC, Ti, Si and Al powder mixtures at 1200 °C. Effect of Al addition on lattice parameters, density and hardness were investigated. Impurities are limited to binary phases of TiC and Ti5Si3. No multinary compound other than Ti3Si(1−x)AlxC2 can be detected. TiC exists as impurity in all samples and trace amount of Ti5Si3 can be detected in Samples x=0.1–0.6. Oxidation of Al cannot be avoided although all sintering were performed under vacuum and trace amount of Al2O3 can be found in all samples with Al addition. Experimental results show that the lattice parameters a and c increase linearly with increasing Al content for x=0–1. The lattice variations are strongly anisotropic and follow Vegard׳s law. Both density and hardness decrease as Al content increases. The linear variation of lattice parameters, d spacings of crystalline faces and density against Al concentration suggest that continuous solid solutions of Ti3Si(1−x)AlxC2 (x=0–1) may have been formed between Ti3SiC2 and Ti3AlC2.  相似文献   

14.
《Ceramics International》2022,48(13):18730-18738
A series of new negative temperature coefficient (NTC) thermal materials based on (Ba0.85Ca0.15)1-xCex/2(Zr0.1Ti0.9)O3 (0.00 ≤ x ≤ 0.20) ceramics were synthesized by a solid-state method. X-ray diffraction, scanning electron microscope and X-ray photoelectron spectroscopy were used to demonstrate the crystal structure, morphology, and composition of the (Ba0.85Ca0.15)1-xCex/2(Zr0.1Ti0.9)O3 ceramics, which were composed of solid solution based on the BaTiO3 phase. The average grain size of doped ceramic samples experienced the process of first decreasing and then increasing. The doping of Ce has reduced the sintering temperature. The temperature-dependent resistance analysis revealed that with the change of doping amount x, the thermal constant B300/1200 (1.21 × 104–1.13 × 104 K) and the activation energy Ea300/1200 (0.9777–1.0471eV) was initially increased to maximum values at x = 0.05, followed by the decreasing when x > 0.05. It has been established that the concentration of oxygen vacancies is affected by the transition between Ce4+ and Ce3+ provided by high levels of Ce doping. (Ba0.85Ca0.15)1-xCex/2(Zr0.1Ti0.9)O3 ceramics exhibited excellent negative temperature characteristics in the range of 300–1200 °C. Moreover, the temperature resistance linearity was improved after samples were aged. Hence, the (Ba0.85Ca0.15)1-xCex/2(Zr0.1Ti0.9)O3 ceramics were regarded as a promising material for high-temperature NTC thermistors in a wide temperature range.  相似文献   

15.
Li0.02(KxNa1?x)0.98NbO3(x = 0.35–0.55) ceramics were prepared using the conventional solid state sintering method. The thermal behaviors of Li-modified (KxNa1?x)NbO3 ceramics were investigated from ?30 to 150 °C, and the effect of Na/K ratio in (KxNa1?x)NbO3 ceramics on thermal behavior and electrical properties was also studied. In the case of Li0.02(KxNa1?x)0.98NbO3 ceramics with 0.5 wt.% ZnO, the transition temperature was sharply decreased because of a phase transition as the composition range of x was 0.425–0.475. From the results of the temperature dependence of piezoelectric properties, it is assumed that the Na-rich phase is less stable than the K-rich phase for temperature change.  相似文献   

16.
In this study, mechanochemical reaction systems with H2WO4 as a precursor were investigated for the synthesis of nanoparticulate powders of WO3, ZnWO4, and dual-phase (ZnWO4)x(ZnO)1–x. The objective was to establish whether mechanochemical processing can be used to manufacture high activity photocatalysts in the ZnO–WO3 system. Milling and heat treatment of H2WO4 + 12NaCl was found to result in the formation of irregularly shaped platelets of a sodium tungstate rather than nanoparticles of WO3. Powders of single-phase ZnWO4 and dual-phase (ZnWO4)x(ZnO)1–x were successfully synthesised by incorporating H2WO4 into the ZnCl2 + Na2CO3 + 4NaCl reactant mixture. The photocatalytic activity of these powders was evaluated using the spin-trapping technique with electron paramagnetic resonance spectroscopy. It was found that the photocatalytic activity decreased with the ZnWO4 content. This decrease in activity was attributed to the larger average particle size of the ZnWO4 component compared to the ZnO, which reduced the surface area available for interfacial transfer of the photogenerated charge carriers.  相似文献   

17.
(1?x)(K0.5Na0.5)NbO3xBa2NaNb5O15 [(1?x)KNN–xBNN, 0 ≤ x ≤0.1] ceramics were prepared by solid‐state reaction method. X‐ray diffraction analysis of the ceramics revealed that the crystal structure changed from orthorhombic to rhombohedral with increasing BNN content. Dielectric measurement showed that the ceramics exhibited good dielectric temperature stability over a wide temperature range. Basic mechanisms of the conduction and relaxation processes have been investigated using impedance spectroscopy analyses. It was concluded that the conduction and relaxation processes were thermally activated and oxygen vacancies were the possible ionic charge carriers at higher temperatures.  相似文献   

18.
In this study, Ba- and Ti-doped Li0.06(Na0.5K0.5)0.94NbO3 [(1 ? x)Li0.06(Na0.5K0.5)0.94NbO3xBaTiO3 (x = 0–0.07)] ceramics were prepared by using conventional solid state reaction method, and the microstructure and electric properties of these samples were investigated. The grain size distribution of non-doped Li0.06(Na0.5K0.5)0.94NbO3 ceramics was relatively wide. The microstructure was composed of grains ranging 1.1–5.0 μm in size. However, with increasing Ba and Ti content, the grain size distribution became narrow and the average grain size decreased from 2.0 to 0.9 μm in size. In particular, the microstructure of x = 0.07 sample was composed of grains ranging 0.5–2.2 μm in size. As a result, the frequency dispersion of dielectric constant for the (1 ? x)Li0.06(Na0.5K0.5)0.94NbO3xBaTiO3 (x = 0–0.07) ceramics was reduced and the mechanical quality factor Qm was enhanced with increasing Ba and Ti content.  相似文献   

19.
《Ceramics International》2022,48(8):11056-11063
Ce2[Zr1?x(Ca1/3Sb2/3)x]3(MoO4)9 (CZ1?x(CS)xM) (x = 0.02–0.10) ceramics were prepared by the conventional solid-state reaction method. The correlations between the chemical bond parameters and microwave dielectric properties were calculated and analyzed by using the Phillips–Van Vechten–Levine (P–V–L) theory. Phase composition and microstructures were evaluated by scanning electron microscopy and X-ray diffraction patterns. Lattice parameters were obtained by Rietveld refinements based on XRD data. Excellent properties for Ce2[Zr0.96(Ca1/3Sb2/3)0.04]3(MoO4)9 ceramic sintered at 775 °C: εr = 10.68, Q×f = 85,336 GHz and τf = ?7.58 ppm/°C were achieved.  相似文献   

20.
The molar magnetic susceptibility (χmol) of Bi1 ? x La x Fe1 ? x Co x O3 solid solutions (x = 1.0, 0.9, 0.8, or 0.7) with a crystal structure of rhombohedrally distorted perovskite (R $\bar 3$ c) has been investigated in the temperature range of 5–300 K in a 0.86 T magnetic field. In the temperature range where χmol depends on temperature T according to the Curie-Weiss law, the resulting effective magnetic moments of Fe3+ and Co3+ ions ( $\mu _{eff,Fe^{3 + } ,Co^{3 + } ,} \mu _{eff,Fe^{3 + } } $ and $\mu _{eff,Co^{3 + } } $ ) have been determined for the solid solutions under study. Fe3+ ions in the solid solutions have been found to be in the mixed intermediate spin (IS) and high spin (HS) states ( $\mu _{eff,Fe^{3 + } } $ is 4.26μB and 4.68μB for the temperature range of 5–100 and 150–300 K, respectively). It is shown that 8% Co3+ ions in LaCoO3 at 5–19 K are in the paramagnetic IS state and they determine to a great extent the magnetic susceptibility. It is established that only 9% and 18% Co3+ ions in Bi1 ? x La x Fe1 ? x Co x O3 solid solutions (x = 0.9 or 0.8) are in the paramagnetic IS state in the temperature ranges of 5–30 and 5–110 K, respectively, while the other ions are diamagnetic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号