首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y2O3-MgO nanocomposite powder was synthesized by a microwave technique and doped into gas-pressure sintered BN/Si3N4 composites to acquire a highly wave-transparent material that could be utilized in spacecrafts. The XRD and SEM analyses indicated that the main phases were rod-like β-Si3N4 particles and MgSiO3. In this case, a BN/Si3N4 ceramic with 8?wt% Y2O3-MgO nanopowder displayed a density of 2.5?g/cm3. The permittivity and transmission efficiency were approximately 4.6% and 71.4%, respectively, at frequencies of 8.2–12.4?GHz, which achieved the best overall wave-transparent performance. The porosity of the material in combination with the inclusion of the boron nitride component creates a synergistic effect that appears to contribute to wave-transparent efficiency.  相似文献   

2.
Transparent Y2Ti2O7 ceramics with excess Y content were fabricated by solid state reactive sintering in vacuum using Y2O3 and TiO2 powders as the starting materials. Phase composition, microstructure, density and in-line transmittance of the Y2Ti2O7 ceramics were investigated. The detailed results indicated that as Y content increased, the density and in-line transmittance increased at first and then decreased. And the highest in-line transmittance of Y2Ti2O7 ceramics is 49.9% at 1100?nm when the excess amount of Y to Ti is 2%. The effect of Y content on densification process of Y2Ti2O7 ceramics was discussed based on an assumption that oxygen vacancy defects were the dominated defects.  相似文献   

3.
《Ceramics International》2016,42(13):14403-14410
Y2O3 nanopowders were synthesized by the hydrothermal treatment of Y(NO3)3·6H2O and citric acid (CA) as Y+3 and the capping agent, respectively. The effect of different CA:Y+3 mol ratios, heat treatment time, and calcination temperature was investigated in order to determine their influence on the morphology, particle size and phase of Y2O3 nanopowders. The narrow size distribution of particles was obtained with CA:Y+3 mol ratio=1.6, heat treatment time of 6 h, and a calcination temperature at 900 °C for 90 min. Then, the synthesized Y2O3 nanopowder was consolidated by the spark plasma sintering technique at 1500 °C with a heating rate of 100 °C/min and held for 8 min before turning off the power. As a result, the ceramic prepared with 3 mm thickness got the highest transmission of 80% at 2.5–6 µm wavelength. The highest density and the grain size of yttria ceramic were 99.58% and 1–1.2 µm at 1500 °C, respectively.  相似文献   

4.
The paper reports the use of La2O3 and ZrO2 co-doping as a composite sintering aid for the fabrication of Tm:Y2O3 transparent ceramics. Two groups of experiments were conducted for investigating the influences of composite sintering aids on the microstructures and the optical properties of Tm:Y2O3 transparent ceramics in contrast to single La3+ and single Zr4+ doped Tm:Y2O3. Samples with composite sintering aids could realize fine microstructures and good optical properties at relatively low sintering temperatures. Grain sizes around 10 μm and transmittances close to theoretical value at wavelength of 2 μm were achieved for the 9 at.% La3+, 3 at.% Zr4+ co-doped samples sintered at 1500-1600 °C. The influences of the composite sintering aids on the emission intensities and the phonon energies of Tm:Y2O3 ceramics were also investigated.  相似文献   

5.
Two-step sintering was employed to consolidate nanocrystalline 8 mol% yittria stabilized zirconia processed by glycine-nitrate method. Results verified the applicability of this method to suppress the final stage of grain growth in the system. The grain size of the high density compacts (>97%) produced by two-step sintering method was seven times less than the pieces made by the conventional sintering technique. Up to ∼96% increase in the fracture toughness was observed (i.e. from 1.61 to 3.16 MPa m1/2) with decreasing of the grain size from ∼2.15 to ∼295 nm. A better densification behavior was also observed at higher compacting pressures.  相似文献   

6.
Silicon carbide ceramics are very interesting materials to engineering applications because of their properties. These ceramics are produced by liquid phase sintering (LPS), where elevated temperature and time are necessary, and generally form volatile products that promote defects and damage their mechanical properties. In this work was studied the infiltration process to produce SiC ceramics, using shorter time and temperature than LPS, thereby reducing the undesirable chemical reactions. SiC powder was pressed at 300 MPa and pre-sintered at 1550 °C for 30 min. Unidirectional and spontaneous infiltration of this preform by Al2O3/Y2O3 liquid was done at 1850 °C for 5, 10, 30 and 60 min. The kinetics of infiltration was studied, and the infiltration equilibrium happened when the liquid infiltrated 12 mm into perform. The microstructures show grains of the SiC surrounded by infiltrated additives. The hardness and fracture toughness are similar to conventional SiC ceramics obtained by LPS.  相似文献   

7.
Highly transparent La1.28Yb1.28Zr2O7.84 ceramic was prepared by vacuum sintering using nanosized raw powders, which were synthesized by a simple solution combustion method using rare earth nitrate as the raw materials. The as-burnt powders were calcined at 1200?℃ and then ball-milled for 24?h with resultant particle size of about 60?nm. The two phases, cubic pyrochlore and defective fluorite, are uniformly distributed in the ceramic. La1.28Yb1.28Zr2O7.84 transparent ceramic with the maximum in-line transmittance of 83.9% was successfully prepared at 1850?℃ for 6?h in a vacuum furnace.  相似文献   

8.
Fine-grained Nd3+:Lu2O3 transparent ceramic was developed by a two-step sintering method in flowing H2 atmosphere at T1 = 1720 °C for 15 min and T2 = 1620 °C for 10 h. The initial nanopowders were synthesized by a wet chemical processing with a uniform particle size of about 40 nm. The average grain size of the obtained 3 at.% Nd3+:Lu2O3 ceramic was 406 nm, which is ∼150 times smaller than the coarse-grained ceramic by normal H2 sintering. The emission intensity of the fine-grained transparent ceramic is 3 times of its coarse-grained counterpart, indicating higher Nd concentration without serious quenching in fine-grained transparent ceramic is possible, which agreed well with the prediction of an atomistic modeling work with YAG. EXAFS research demonstrated that with decreasing grain size, higher degree of disorder factor of the local environment of doped Nd atoms was discovered.  相似文献   

9.
Ytterbium-doped yttria (Yb3+:Y2O3) nanopowders for transparent ceramics were synthesized by using a carbonate-precipitation method. The characteristics of precursor and powders calcined at different temperatures were investigated. The pure yttria phase can form through calcining at 700 °C. The Yb3+:Y2O3 nanopowders calcined at 1100 °C were well dispersed with a spherical morphology, and had a narrow particle size distribution with a mean particle size of about 70 nm. By using 1100 °C-calcined powders, nearly full dense Yb3+:Y2O3 ceramics were fabricated at 1750 °C for 8 h without any additives under vacuum conditions. The fluorescence spectrum of the sintered ceramics illustrates that there are two emission peaks locating at 1028 and 1071 nm respectively, all corresponding to the 2F5/2 → 2F7/2 transitions of Yb3+ ion. Homogeneous Yb3+:Y2O3 nanopowders synthesized by carbonate-precipitation method are suitable for the fabrication of IR-transparent ceramics.  相似文献   

10.
Highly transparent polycrystalline Er3+:Y3Al5O12 (Er:YAG) ceramics with different Er3+ ions content from 1% to 90% were prepared by the solid-state reaction and the vacuum-sintering technique. The grain boundary is clean and narrow with a width of about 1 nm. The best sintering temperature of the ceramics is about 1800 °C. The relationships between fabrication, microstructure and transparency of the ceramics were discussed. Grain size distributions in axial direction of cylinder samples were characterized by electron probe micro-analyzer (EPMA). The luminescence spectra were measured and discussed.  相似文献   

11.
Ytterbium doped lutetium oxide (Yb:Lu2O3) transparent ceramics were fabricated by vacuum sintering combined with hot isostatic pressing (HIP) of the powders synthesized by the co-precipitation method. The effects of calcination temperature on the composition and morphology of the powders were investigated. Fine and well dispersed 5?at% Yb:Lu2O3 powders with the mean particle size of 67?nm were obtained when calcined at 1100?°C for 4?h. Using the synthesized powders as starting material, we fabricated 5?at% Yb:Lu2O3 ceramics by pre-sintering at different temperatures combined with HIP post-treatment. The influence of pre-sintering temperature on the densities, microstructures and optical quality of the 5?at% Yb:Lu2O3 ceramics was studied. The ceramic sample pre-sintered at 1500?°C for 2?h with HIP post-treating at 1700?°C for 8?h has the highest in-line transmittance of 78.2% at 1100?nm and the average grain size of 2.6?µm. In addition, the absorption and emission cross sections of the 5?at% Yb:Lu2O3 ceramics were also calculated.  相似文献   

12.
A suspension stabilizer-coating technique was employed to prepare x mol% Yb2O3 (x = 1.0, 2.0, 3.0 and 4.0) and 1.0 mol% Y2O3 co-doped ZrO2 powder. A systematic study was conducted on the sintering behaviour, phase assemblage, microstructural development and mechanical properties of Yb2O3 and Y2O3 co-doped zirconia ceramics. Fully dense ZrO2 ceramics were obtained by means of pressureless sintering in air for 1 h at 1450 °C. The phase composition of the ceramics could be controlled by tuning the Yb2O3 content and the sintering parameters. Polycrystalline tetragonal ZrO2 (TZP) and fully stabilised cubic ZrO2 (FSZ) were achieved in the 1.0 mol% Y2O3 stabilised ceramic, co-doped with 1.0 mol% Yb2O3 and 4.0 mol% Yb2O3, respectively. The amount of stabilizer needed to form cubic ZrO2 phase in the Yb2O3 and Y2O3 co-doped ZrO2 ceramics was lower than that of single phase Y2O3-doped materials. The indentation fracture toughness could be tailored up to 8.5 MPa m1/2 in combination with a hardness of 12 GPa by sintering a 1.0 mol% Yb2O3 and 1.0 mol% Y2O3 ceramic at 1450 °C for 1 h.  相似文献   

13.
A non-aqueous tape-casting process for fabricating CaO-B2O3-SiO2 glass/Al2O3 dielectric tape for LTCC applications was investigated. An isopropanol/ethanol/xylene ternary solvent-based slurry was developed by using castor oil, poly(vinyl butyral), and dibutyl phthalate as dispersant, binder, and plasticizer, respectively. The effects of dispersant concentration, binder content, plasticizer/binder ratio, and solid loading, on the properties of the casting slurry and resultant tape were systematically investigated. The results showed that the optimal values for the dispersant and binder contents, plasticizer/binder ratio, and solid loading were 2.0 wt%, 7.5 wt%, 0.6, and 62 wt%, respectively. The resultant flexible and uniform, 120-μm-thick CaO-B2O3-SiO2 glass/Al2O3 tape had a density of 1.90 g/cm?3, tensile strength of 1.66 MPa, and average surface roughness of 310 nm. Laminated tapes sintered at 875 °C for 15 min exhibited excellent properties: relative density of 97.3%, εr of 7.98, tan δ of 1.3 × 10?3 (10 MHz), flexural strength of 205 MPa, and thermal expansion coefficient of 5.47 ppm/°C. The material demonstrated good chemical compatibility with Ag electrodes, indicating a significant potential in LTCC applications.  相似文献   

14.
Al2O3/SiC ceramic composites with Y2O3 as an additive, was synthesized using the Taguchi method of design of experiments, so as to develop statistically sound input output relationships. The proportion of SiC was varied from 12 to 21 vol.% whereas that of Y2O3 was varied from 2.5 to 4 vol.%. The composites were sintered at 1500 °C for a soaking time period of 12 h in an air atmosphere. Cracks were induced on the composite surface using a Vickers indenter with a load varying between 20 and 40 kg. Fractographical analyses have been carried out using optical and/or scanning electron microscopy to investigate the surface crack propagation behavior. Thermal aging at 1300 °C in the time range of 0.5-12.5 h was applied to find optimal conditions for healing of the pre-cracked samples. The output parameters such as crack length, healed crack length, hardness and fracture toughness of the samples were correlated with appropriate inputs such as contents of SiC and Y2O3, crack-healing temperature, healing time, compaction pressure, indentation load using statistical analysis. Further, the extent of influence, exerted by pertinent input parameters on output parameters, was also identified.  相似文献   

15.
Transparent Nd:Y2O3 ceramic was obtained by sintering mono-sized spherical powder. The powder was prepared by homogeneous precipitation method in aqueous media using urea to regulate the pH. The structure and morphology of the powder were investigated by TG-DTA, XRD, SEM and IR spectrum. The effect of aging temperature, time, and the concentration of urea, [Y3+], and [Nd3+] were investigated. Results showed that the obtained precursor was R2(OH)CO3·H2O (R = Y, Nd), and the least size of mono-sized spherical yttria particles was 72 nm by a microwave oven method after calcinations at 850 °C for 4 h. After dry press and CIP, the particles accumulated closely, and no defects can be detected in the green body.  相似文献   

16.
Yb doped (Y0.97Zr0.03)2O3 transparent ceramics were fabricated by solid state reaction and vacuum sintering. The microstructure, thermal and mechanical properties of Y2O3 ceramic, as well as the effect of Yb doping concentration on these properties were investigated in detail. The lattice parameter and unit cell volume decrease with the increasing of Yb content, whereas thermal expansive coefficient increases. With Yb content increasing from 0 to 8 at.%, the mean grain size increases from 15.82 μm to 26.54 μm, and the thermal conductivity at room temperature (RT) decreases from 11.97 to 6.39 W/m/K. The microhardness decreases with Yb content, and the microhardness and fracture toughness of (Y0.97Zr0.03)2O3 transparent ceramic is 11.11 GPa and 1.29 MPa m1/2, respectively.  相似文献   

17.
We focused on the linear negative thermal expansion of Y2W3O12 in a wide-temperature range and on the chemical stability of ZrSiO4 in the fabrication of the composite material ZrSiO4/Y2W3O12 with a zero-thermal-expansion. The compact composed of Y2W3O12 and ZrSiO4 had a thermal shrinkage rate smaller than that of Y2W3O12 and higher than that of ZrSiO4. SEM–EDX observation clarified that the ZrSiO4/Y2W3O12 sintered body fabricated at 1400 °C for 10 h had a microstructure composed of ZrSiO4 and Y2W3O12 grains, and XRD indicated that only ZrSiO4 and Y2W3O12 phases existed in the sintered body. The relative density of the ZrSiO4/Y2W3O12 sintered body reached 92%, which was larger than that of the ZrSiO4 sintered body because Y2W3O12 grains could be sintered at lower temperatures. The average linear thermal expansion coefficients of the ZrSiO4/Y2W3O12 sintered body were −0.4 × 10−6 and −0.08 × 10−6 °C−1 in the temperature ranges from 25 to 500 °C and from 25 to 1000 °C, respectively, which showed an almost zero-thermal-expansion.  相似文献   

18.
Highly transparent Tm3Al5O12 (TmAG) ceramics were fabricated by solid-state reaction and vacuum sintering. Densification, microstructure evolution, mechanical, thermal, and optical properties of the TmAG ceramics were investigated. Fully dense TmAG ceramic with average grain size of 15 μm was obtained by sintering at 1780 °C for 20 h. The in-line transmittance was 80.5% at 2000 nm. The absorption coefficients at 682 nm and 785 nm were 8.03 cm−1 and 8.33 cm−1, respectively. The Vickers hardness, the Young modulus, the bending strength, and the fracture toughness values were 15.14 GPa, 343 GPa, 230 MPa, and 2.35 MPa m1/2, respectively. The thermal conductivity at room temperature was 3.3 W/m K and the average linear thermal expansion coefficient from 20 °C to 1000 °C was 8.915 × 10−6 K.  相似文献   

19.
Thixotropic gels of the precursor powders of the titled compounds have been prepared by the addition of oxalic acid to the mixed solutions of metal salts at room temperature (≈ 27 °C). The clear sols of yttrium-zirconyl oxalate (YZO) and yttrium-cerium-zirconyl oxalate (YCZO) gelled within a few hours and were oven-dried at 40 °C. The various stages of gelation behaviour of the sols are explained on the basis of DLVO theory. By repeptizing the dried gel powders with water, concentrated sols were prepared. The gelation time as a function of chloride ion concentration is discussed for both sols. The nature of the temperature dependence of the dried gel powders was studied by means of thermogravimetric analysis and differential thermal analysis. Powder X-ray diffraction was used to study the crystallization behaviour of the dried amorphous gel powders. It is found that these powders crystallize in tetragonal phase when calcined at 850 °C for 1 h. Estimation of surface area and infra-red characterization have also been carried out for the prepared powders.  相似文献   

20.
ZrO2@Al2O3 composite ceramic powders were prepared by solution combustion method with aluminum nitrate (Al (NO3)3) and 3?mol% yttria-stabilized tetragonal zirconia polycrystal (3Y- TZP) as the main raw materials, ammonium polyacrylate (PAA-NH4) as a dispersant, urea (CO (NH2)2) as a reducing agent. The effects of PAA-NH4 concentration and drying method on the microstructure and morphology of the ZrO2@Al2O3 powders were investigated. The results showed that when the concentration of PAA-NH4 was 1.5?wt%, and the molar ratio of Al (NO3)3 to CO (NH2)2 was 1:2, the ZrO2@Al2O3 powders with uniform grain size and high crystallinity could be synthesized by solution combustion drying method. Additionally, the abnormal growth of 3Y- TZP grain in ZrO2@Al2O3 was suppressed and the crystalline phase transformation trend (t-ZrO2 to m-ZrO2) was obviously decreased after sintering at 1600?°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号