首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The activity of tumor necrosis factor (TNF), a proinflammatory cytokine, is regulated by a number of other cytokines, including interleukin (IL)-4. How IL-4 regulates various activities of TNF is not fully understood. In the present report, we investigated the effect of IL-4 on the cell surface TNF receptors in human histiocytic lymphoma U-937 cells. Pretreatment of cells with IL-4 down-regulated TNF receptors in a dose- and time-dependent manner; an almost 90% decrease occurred with 10 ng/ml IL-4 treatment for 24 h. Scatchard analysis revealed that the decrease was due to receptor number and not affinity. IL-13, which shares a common receptor subunit and various biological activities with IL-4, had no effect on TNF receptors. IL-4's effect on TNF receptors was not cell type-specific, since decreases also occurred on various epithelial and T cells. Both the p60 and p80 forms of the TNF receptor were down-regulated to the same extent. Western blot showed that IL-4 induced shedding of the TNF receptors. The decrease of TNF receptors by IL-4 was accompanied by down-regulation of TNF-induced activities, including cytotoxicity, caspase-3 activation, NF-kappaB and AP-1 activation, and c-Jun N-terminal kinase induction. Wortmannin reversed the IL-4-induced TNF receptor down-regulation and all other measured cellular responses, indicating a critical role of phosphatidylinositol 3-kinase. Rapamycin also blocked the effect of IL-4-induced regulation, thus suggesting the role of p70 S6 kinase. Overall, our results suggest that TNF receptor down-regulation by IL-4 plays a critical role in the antagonistic effects of IL-4 on TNF-induced cellular responses and that this mechanism differs from that of IL-13.  相似文献   

6.
7.
8.
9.
Fas ligand and tumor necrosis factor alpha (TNF) bind to members of the TNF receptor superfamily. Stimulation by Fas ligand results in apoptosis, whereas TNF induces multiple effects including proliferation, differentiation, and apoptosis. Activation of the c-Jun N-terminal kinase (JNK) and p38 kinase pathways is common to Fas and TNF signaling; however, their role in apoptosis is controversial. Fas receptor cross-linking induces apoptosis in the absence of actinomycin D and activates JNK in a caspase-dependent manner. In contrast, TNF requires actinomycin D for apoptosis and activates JNK and p38 kinase with biphasic kinetics. The first phase is transient, precedes apoptosis, and is caspase-independent, whereas the second phase is coincident with apoptosis and is caspase-dependent. Inhibition of early TNF-induced JNK and p38 kinases using MKK4/MKK6 mutants or the p38 inhibitor SB203580 increases TNF-induced apoptosis, whereas expression of wild type MKK4/MKK6 enhances survival. In contrast, the Mek inhibitor PD098059 has no effect on survival. These results demonstrate that early activation of p38 kinase (but not Mek) are necessary to protect cells from TNF-mediated cytotoxicity. Thus, early stress kinase activation initiated by TNF plays a key role in regulating apoptosis.  相似文献   

10.
Tumor necrosis factor (TNF)-mediated apoptotic signaling has been characterized by activation of specific protease or protein kinase cascades that regulate the onset of apoptosis. TNF has also been shown to induce oxidative or genotoxic stress in some cell types, and apoptotic potential may be determined by the cellular response to this stress. To determine the role of genotoxic stress in TNF-mediated apoptosis, we examined cellular accumulation of p53 in TNF-treated ME-180 cells selected for apoptotic sensitivity (ME-180S) or resistance (ME-180R) to TNF. Although TNF was able to activate receptor-mediated signaling in either cell line, p53 accumulation was measurable only in apoptotically sensitive ME-180S cells. TNF-induced changes in p53 levels were detected 1 h after treatment, and peak levels were measurable 4-8 h after TNF exposure. TNF was unable to induce p21WAF1 in either cell line but affected the stability of this protein in apoptotically responsive ME-180S cells. Evidence of p21WAF1 proteolysis was detected by monitoring the appearance of a 16-kDa immunoblottable p21WAF1 fragment, which became detectable 4 h after TNF addition and increased in content before the onset of DNA fragmentation (16-24 h). The kinetics of p21WAF1 proteolysis closely paralleled those of poly(ADP-ribose) polymerase, suggesting cleavage of p21WAF1 by activation of an apoptotic protease. Pretreatment of ME-180S cells with the apoptotic protease inhibitor YVAD blocked TNF-induced apoptosis and prevented both poly(ADP-ribose) polymerase and p21WAF1 degradation but did not affect p53 induction. These results provide evidence for the early onset of genotoxic stress in cells committed to TNF-mediated apoptosis and for divergence in propagation of this signal in non-responsive cells. In addition, TNF-induced p21WAF1 proteolysis may be mediated by an apoptotic protease and may contribute to the apoptotic process by disrupting p53 signaling, altering cell cycle inhibition, and limiting cellular recovery from genotoxic stress.  相似文献   

11.
12.
The death domain of tumor necrosis factor (TNF) receptor-1 (TNFR1) triggers distinct signaling pathways leading to apoptosis and NF-kappa B activation through its interaction with the death domain protein TRADD. Here, we show that TRADD interacts strongly with RIP, another death domain protein that was shown previously to associate with Fas antigen. We also show that RIP is a serine-threonine kinase that is recruited by TRADD to TNFR1 in a TNF-dependent process. Overexpression of the intact RIP protein induces both NF-kappa B activation and apoptosis. However, expression of the death domain of RIP Induces apoptosis, but potently inhibits NF-kappa B activation by TNF. These results suggest that distinct domains of RIP participate in the TNF signaling cascades leading to apoptosis and NF-kappa B activation.  相似文献   

13.
14.
15.
16.
17.
18.
19.
A key step by which tumor necrosis factor (TNF) signals the activation of nuclear factor-kappaB (NF-kappaB) and the stress-activated protein kinase (SAPK, also called c-Jun N-terminal kinase or JNK) is the recruitment to the TNF receptor of TNF receptor-associated factor 2 (TRAF2). However, the subsequent steps in TRAF2-induced SAPK and NF-kappaB activation remain unresolved. Here we report the identification of a TNF-responsive serine/threonine protein kinase termed GCK related (GCKR) that likely signals via mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase kinase 1 (MEKK1) to activate the SAPK pathway. TNF, TRAF2, and ultraviolet (UV) light, which in part uses the TNF receptor signaling pathway, all increased GCKR activity. A TRAF2 mutant, which inhibits both TRAF2-induced NF-kappaB and SAPK activation, blocked TNF-induced GCKR activation. Finally, interference with GCKR expression impeded TRAF2- and TNF-induced SAPK activation but not that of NF-kappaB. This suggests a divergence in the TNF signaling pathway that leads to SAPK and NF-kappaB activation, which is located downstream of TRAF2 but upstream of GCKR.  相似文献   

20.
Expression of the NF-kappaB-dependent gene A20 in endothelial cells (EC) inhibits tumor necrosis factor (TNF)-mediated apoptosis in the presence of cycloheximide and acts upstream of IkappaBalpha degradation to block activation of NF-kappaB. Although inhibition of NF-kappaB by IkappaBalpha renders cells susceptible to TNF-induced apoptosis, we show that when A20 and IkappaBalpha are coexpressed, the effect of A20 predominates in that EC are rescued from TNF-mediated apoptosis. These findings place A20 in the category of "protective" genes that are induced in response to inflammatory stimuli to protect EC from unfettered activation and from undergoing apoptosis even when NF-kappaB is blocked. From a therapeutic perspective, genetic engineering of EC to express an NF-kappaB inhibitor such as A20 offers the mean of achieving an anti-inflammatory effect without sensitizing the cells to TNF-mediated apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号