首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a high-efficiency high-resolution particle-induced x-ray emission (PIXE) system employing a von Hamos-type crystal spectrometer for a chemical state identification of trace elements in environmental samples. The energy resolution of the system was determined to be about 0.05% through the observation of Si Kalpha(1,2) x rays (1.74 keV) from elemental silicon. The throughput efficiency of the system was also evaluated quasitheoretically to be 1.6x10(-7) counts/incident proton for Si Kalpha(1,2) emission. To demonstrate a chemical state analysis using the high-resolution PIXE system, Si Kalpha(1,2) and Kbeta x-ray spectra for SiC, Si(3)N(4), and SiO(2) were measured and compared. The observed chemical shifts of the Si Kalpha(1,2) peaks for SiC, Si(3)N(4), and SiO(2) relative to elemental silicon were 0.20, 0.40, and 0.55 eV, respectively. The tendency of these shifts were well explained by the effective charges of the silicon atoms calculated by a molecular orbital method.  相似文献   

2.
High-resolution x-ray measurements were performed with a von Hamos-type bent crystal spectrometer using for the detection of the diffracted photons either a back-illuminated charge-coupled device (CCD) camera or a front-illuminated one. For each CCD the main x-ray emission lines (e.g., Kalpha, Kbeta, Lalpha, and Lbeta) of a variety of elements were measured in order to probe the performances of the two detectors between 1 and 18 keV. From the observed x-ray lines the linearity of the energy response, the noise level, the energy resolution, and the quantum efficiency ratio of the two CCDs were determined.  相似文献   

3.
A curved-crystal x-ray emission spectrometer has been designed and built to measure 2-5 keV x-ray fluorescence resulting from a core-level excitation of gas phase species. The spectrometer can rotate 180 degrees, allowing detection of emitted x rays with variable polarization angles, and is capable of collecting spectra over a wide energy range (20 eV wide with 0.5 eV resolution at the Cl K edge) simultaneously. In addition, the entire experimental chamber can be rotated about the incident-radiation axis by nearly 360 degrees while maintaining vacuum, permitting measurements of angular distributions of emitted x rays.  相似文献   

4.
5.
Different metal targets were investigated as possible source material for tailored laser-produced plasma-sources. In the wavelength range from 1 to 20 nm, x-ray spectra were collected with a calibrated spectrometer with a resolution of λ/Δλ = 150 at 1 nm up to λ/Δλ = 1100 at 15 nm. Intense line emission features of highly ionized species as well as continuum-like spectra from unresolved transitions are presented. With this knowledge, the optimal target material can be identified for the envisioned application of the source in x-ray spectrometry on the high energy side of the spectra at about 1 keV. This energy is aimed for because 1 keV-radiation is ideally suited for L-shell x-ray spectroscopy with nm-depth resolution.  相似文献   

6.
An x-ray imaging crystal spectrometer was designed for the Hanbit magnetic mirror device to observe spectra of heliumlike neon at 13.4474 A. The spectrometer consists of a spherically bent mica crystal and an x-ray sensitive vacuum charge coupled device camera. This spectrometer can provide spatially resolved spectra, making it possible to obtain profiles of the ion charge state distribution from line ratios and profiles of the plasma rotation velocity from Doppler shift measurements. The paper describes measurements of spectral resolution of this instrument for low x-ray energies.  相似文献   

7.
A multi-crystal wavelength dispersive hard x-ray spectrometer with high-energy resolution and large solid angle collection is described. The instrument is specifically designed for time-resolved applications of x-ray emission spectroscopy (XES) and x-ray Raman scattering (XRS) at X-ray Free Electron Lasers (XFEL) and synchrotron radiation facilities. It also simplifies resonant inelastic x-ray scattering (RIXS) studies of the whole 2d RIXS plane. The spectrometer is based on the Von Hamos geometry. This dispersive setup enables an XES or XRS spectrum to be measured in a single-shot mode, overcoming the scanning needs of the Rowland circle spectrometers. In conjunction with the XFEL temporal profile and high-flux, it is a powerful tool for studying the dynamics of time-dependent systems. Photo-induced processes and fast catalytic reaction kinetics, ranging from femtoseconds to milliseconds, will be resolvable in a wide array of systems circumventing radiation damage.  相似文献   

8.
Time-resolved x-ray spectrometry using an ultrastrong x-ray source such as an x-ray free electron laser is one of the new trends in the field of x-ray physics. To achieve such time-resolved measurement, the development of an one-shot spectrometer with a wide wavelength range, high efficiency, and good energy resolution is an essential prerequisite. Here we developed an integrated conical Ge crystal analyzer consisting of several conical rings, which were connected using spline surfaces to form a single body using our previously developed hot deformation technique, which can form a Si or Ge wafer into an arbitrary and accurate shape. We simultaneously focused several characteristic lines from an alloy sample onto different positions on a small x-ray charge-coupled device with very high image brightness (gain relative to planar analyzer: 100) and a good spatial resolution of 9-13 eV. The small radius of curvature of the crystal (28-50 mm) enabled us to realize a very short sample-detector distance of 214.4 mm. The present result shows the possibility of realizing a new focusing x-ray crystal spectrograph that can control the focal position as desired.  相似文献   

9.
I. Pozsgai  A. Barna  P. Toth 《Scanning》1990,12(1):53-56
Energy-dispersive x-ray fluorescence (EDXRF) analysis with a lateral resolution of 300 μm has been used in scanning electron microscopy to carry out model experiments for the identification of small glass fragments. Small sample dimensions can produce size effects which cause intensity changes in the EDXRF spectra as compared with bulk specimen spectra. These effects can be analysed by means of the inelastically scattered Mo Kα source line as long as the x-ray spot size is smaller than the specimen dimension.  相似文献   

10.
A new multiturn tandem time-of-flight (TOF) mass spectrometer "MULTUM-TOF/TOF" has been designed and constructed. It consists of a matrix-assisted laser desorption/ionization ion source, a multiturn TOF mass spectrometer, a collision cell, and a quadratic-field ion mirror. The multiturn TOF mass spectrometer can overcome the problem of precursor ion selection in TOF, due to insufficient time separation between two adjacent TOF peaks, by increasing the number of cycles. As a result, the total TOF increases with the increase in resolving power. The quadratic-field ion mirror allows temporal focusing for fragment ions with different kinetic energies. Product ion spectra from monoisotopically selected precursor ions of angiotensin I, substance P, and bradykinin have been obtained. The fragment ions observed are mainly the result of high-energy collision induced dissociation.  相似文献   

11.
An existing micro-x-ray fluorescence (micro-XRF) spectrometer designed for light element analysis (6 ≤ Z ≤ 14) has been extended to confocal geometry: a second polycapillary x-ray optic has been introduced in front of the energy dispersive x-ray detector. New piezo positioners for optimum alignment of both optics have been installed inside the vacuum chamber. The spectrometer offers now the possibility of true 3D elemental analysis in the micrometer regime. Depth resolution varies between 100 μm at 1 keV fluorescence energy (Na-Kα) and 30 μm for 17.5 keV (Mo). To further extend analytical capabilities a second x-ray tube with a Rh anode has been acquired to supplement to existing Mo anode tube. Lower limits of detection have been determined to be in the ppm region for confocal geometry. The spectrometer has been characterized and tested using different samples. Furthermore, results have been compared with SR micro-XRF to show the capabilities and limitations of this spectrometer.  相似文献   

12.
A new type of collector optics was developed for grazing incident x-ray emission spectrometer. The collector optics used two cylindrical mirrors to add two extra light paths while keeping the center light path that directly illuminates the grating. The design and properties of the spectrometer using the triple-path collector optics were evaluated using ray-tracing simulations, and validity of this design in terms of throughput and energy resolution was confirmed by the experimentally obtained spectra.  相似文献   

13.
A new laboratory x-ray spectrometer for surface-sensitive extended x-ray absorption fine structure [(S)EXAFS] and surface-sensitive x-ray absorption near-edge structure [(S)XANES] measurements is described. The spectrometer employs a 12 kV mA rotating anode generator. It has a monochromator equipped with a set of exchangeable curved crystals of Johann or Johansson type with different cell parameters, orientations, and Rowland radii. The computer controlled movement system based on nine stepping motors allows all the main elements of the spectrometer to be positioned freely relative to the x-ray source and gives an opportunity to use sophisticated scanning modes (for example, a mode with a focus spot position on a sample surface instead of an exit slit). The whole x-ray beam line is completely enclosed in a vacuum chamber that is directly connected to the x-ray generator, thereby preventing the absorption of x rays in the air. This layout allows a wide x-ray photon energy range from a few keV up to dozens of keV. A registration of x rays transmitted through the sample with proportional counter- and photoelectrons emitted from the sample with channeltron is used to carry out bulk- and surface-sensitive measurements, respectively. Using a 25 x 200 kV mA power regime of a rotating anode x-ray generator, a photon flux of 2.5 x 10(5) counts/s was registered at the Cu K edge, where the energy resolution was about 5 eV. High near surface sensitivity is demonstrated by the EXAFS spectra of Cu K and Hf LIII edges measured from 3 nm Cu and Hf oxide films.  相似文献   

14.
Spectrofluorometric imaging microscopy is demonstrated in a confocal microscope using a supercontinuum laser as an excitation source and a custom‐built prism spectrometer for detection. This microscope system provides confocal imaging with spectrally resolved fluorescence excitation and detection from 450 to 700 nm. The supercontinuum laser provides a broad spectrum light source and is coupled with an acousto‐optic tunable filter to provide continuously tunable fluorescence excitation with a 1‐nm bandwidth. Eight different excitation wavelengths can be simultaneously selected. The prism spectrometer provides spectrally resolved detection with sensitivity comparable to a standard confocal system. This new microscope system enables optimal access to a multitude of fluorophores and provides fluorescence excitation and emission spectra for each location in a 3D confocal image. The speed of the spectral scans is suitable for spectrofluorometric imaging of live cells. Effects of chromatic aberration are modest and do not significantly limit the spatial resolution of the confocal measurements.  相似文献   

15.
An electron spectrometer is described which is designed to measure a variety of electron spectra of solid surfaces in ultrahigh vacuum. The instrument is capable of the high-energy resolution (10-15 meV) required for vibrational inelastic electron scattering from atoms and molecules on surfaces. It has also been designed to carry out angle-resolved photoemission measurements, Auger electron spectroscopy, and energy-loss measurements of electronic excitations. The performance of the instrument in these modes of operation is discussed.  相似文献   

16.
This paper considers a new linear multichannel x-ray detector designed on the basis of a BLPP-369M4 silicon photodiode array (2612 photodiodes, array pitch 12.5 µm, height 4 mm, and dynamic range 104). The structure and characteristics of the multichannel detector are given, along with the Kα1,2, Kβ 1, and Kβ 5 x-ray emission lines and a K-edge absorption spectrum of metallic copper recorded on a universal URS-2I spectrometer using this detector. The resolution and the signal/noise ratio of these spectra are superior to those of spectra recorded by an SRPP-21 gas ionization counter at the same recording time. The detector has a spatial resolution of 20 µm and an x-ray detection limit to equal 1 quantum at λ = 1.54 Å. It is suitable for studying the fine structure of absorption spectra at 1–10 Å.  相似文献   

17.
Fluorescence detection is classically achieved with a solid state detector (SSD) on x-ray absorption spectroscopy (XAS) beamlines. This kind of detection however presents some limitations related to the limited energy resolution and saturation. Crystal analyzer spectrometers (CAS) based on a Johann-type geometry have been developed to overcome these limitations. We have tested and installed such a system on the BM30B/CRG-FAME XAS beamline at the ESRF dedicated to the structural investigation of very dilute systems in environmental, material and biological sciences. The spectrometer has been designed to be a mobile device for easy integration in multi-purpose hard x-ray synchrotron beamlines or even with a laboratory x-ray source. The CAS allows to collect x-ray photons from a large solid angle with five spherically bent crystals. It will cover a large energy range allowing to probe fluorescence lines characteristic of all the elements from Ca (Z = 20) to U (Z = 92). It provides an energy resolution of 1-2 eV. XAS spectroscopy is the main application of this device even if other spectroscopic techniques (RIXS, XES, XRS, etc.) can be also achieved with it. The performances of the CAS are illustrated by two experiments that are difficult or impossible to perform with SSD and the complementarity of the CAS vs SSD detectors is discussed.  相似文献   

18.
A high-energy resolution post-column spectrometer for the purpose of electron energy loss spectroscopy (EELS) and energy-filtered TEM in combination with a monochromated (S)TEM is presented. The prism aberrations were corrected up to fourth order using multipole elements improving the electron optical energy resolution and increasing the acceptance of the spectrometer for a combination of object area and collection angles. Electronics supplying the prism, drift tube, high-tension reference and critical lenses have been newly designed such that, in combination with the new electron optics, a sub-50 meV energy resolution has been realized, a 10-fold improvement over past post-column spectrometer designs. The first system has been installed on a 200 kV monochromated TEM at the Delft University of Technology. Total system energy resolution of sub-100 meV has been demonstrated. For a 1s exposure the resolution degraded to 110 meV as a result of noise. No further degradation in energy resolution was measured for exposures up to 1 min at 120 kV. Spectral resolution measurements, performed on the pi* peak of the BN K-edge, demonstrated a 350 meV (FWHM) peak width at 200 kV. This measure is predominantly determined by the natural line width of the BN K-edge.  相似文献   

19.
We present a table-top soft-x-ray spectrometer for the wavelength range λ = 1-5 nm based on a stable laser-driven x-ray source, making use of a gas-puff target. With this setup, optical light-pump/soft-x-ray probe near-edge x-ray absorption fine structure (NEXAFS) experiments with a temporal resolution of about 230 ps are feasible. Pump-probe NEXAFS measurements were carried out in the "water-window" region (2.28 nm-4.36 nm) on the manganite Pr(0.7)Ca(0.3)MnO(3), investigating diminutive changes of the oxygen K edge that derive from an optically induced phase transition. The results show the practicability of the table-top soft-x-ray spectrometer on demanding investigations so far exclusively conducted at synchrotron radiation sources.  相似文献   

20.
In the pursuit of novel, laser-produced x-ray sources for medical imaging applications, appropriate instrumental diagnostics need to be developed concurrently. A type of transmission crystal spectroscopy has previously been demonstrated as a survey tool for sources produced by high-power and high-energy lasers. The present work demonstrates the extension of this method into the study of medium-intensity laser driven hard x-ray sources with a design that preserves resolving power while maintaining high sensitivity. Specifically, spectroscopic measurements of characteristic Kα and Kβ emissions were studied from Mo targets irradiated by a 100 fs, 200 mJ, Ti: sapphire laser with intensity of 10(17) W/cm(2) to 10(18) W∕cm(2) per shot. Using a transmission curved crystal spectrometer and off-Rowland circle imaging, resolving powers (E/ΔE) of around 300 for Mo Kα(2) at 17.37 keV were obtained with an end-to-end spectrometer efficiency of (1.13 ± 0.10) × 10(-5). This sensitivity is sufficient for registering x-ray lines with high signal to background from targets following irradiation by a single laser pulse, demonstrating the utility of this method in the study of the development of medium-intensity laser driven x-ray sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号