首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT:  Trans -free solid fats were synthesized from fully hydrogenated soybean oil (FHSBO), olive oil (OO), and palm stearin (PS) at different substrate weight ratios (10:20:70, 10:40:50 and 10:50:40) via lipase-catalyzed interesterification. The interesterified products contained mostly TAG (98.8% to 99.0%), and small amounts of MAG and DAG as by-products. The major fatty acids were oleic acid, palmitic acid, and stearic acid in the interesterified products, and the melting points ranged from 39 to 45 °C. The amount of α-tocopherol was reduced by 75% to 92%. Volatile analysis by solid-phase microextraction indicated that OO and PS had distinct volatile profiles, in which 18 volatiles were retained in interesterified products. Furthermore, some volatiles disappeared or formed during processing. Electronic nose showed that the odors of substrates (OO and PS) were different from each other, and the odors of interesterified products were distinguishable from that of OO or PS. Among the interesterified products, the odor of blend FHSBO:OO:PS of 10:40:50 or 10:50:40 was different from that of blend FHSBO:OO:PS (10:20:70). However, no odor difference was observed between products blend FHSBO:OO:PS 10:40:50 and 10:50:40.  相似文献   

2.
Fat blends, formulated by mixing refined, bleached and deodorised (RBD) palm oil (PO) or RBD palm stearin (PS) with RBD rice bran oil (RBO) in various ratios were subjected to chemical interesterification (CIE) at pilot scale using sodium methoxide (NaOMe) as catalyst. The resultant interesterified fat was processed through a margarine crystalliser under optimised conditions. The blends before and after CIE were investigated for triacylglycerol (TAG) composition, solid fat content (SFC) and melting characteristics, polymorphic form, fatty acid composition (FAC), bioactive (tocols, sterols, oryzanol) constituents and trans fatty acids (TFA). CIE was found to be very effective in terms of rearrangement of fatty acids (FAs) among TAGs and consequent changes in the physical characteristics. The SFC of the interesterified PS/RBO blends decreased significantly ( P  ≤ 0.05) when compared with those of PO/RBO blends. The interesterified binary blends with 50–60% PS and 40–50% RBO, and 70–80% PO and 20–30% RBO had SFC curves in the range of all-purpose type shortenings. CIE facilitated the formation of β' polymorphic forms. FAC of shortenings prepared using the optimised blends contained 15–20% C18:2 polyunsaturated fatty acid (PUFA) and no TFA. Total tocol, sterol and oryzanol content of zero trans shortenings were 650–1145, 408–17 583 and 1309–14 430 ppm. CIE using NaOMe did not affect the bioactive constituents significantly ( P  ≤ 0.05).  相似文献   

3.
M.A. Alim  C.C. Akoh  M.-S. Jeon  K.-T. Lee 《LWT》2008,41(5):764-770
Rice bran oil (RBO) was fractionated at a low temperature (−16 °C) and the yield of fractionated solid (S-RBO) and liquid (L-RBO) phase were 66.5 and 33.5 g/100 g, respectively. The L-RBO contained more unsaturated fatty acids (81.8%) than S-RBO (76.1%). Response surface methodology (RSM) was used to determine the effects of three variables (water activity of lipase, reaction temperature and time) on the lipase catalyzed incorporation of conjugated linoleic acid (CLA) into L-RBO. We used CLA as the acyl due to its purported health benefits. The transesterified lipid (TL) contained palmitic (13.5%), oleic (37.5%), linoleic (26.6%) and CLA isomers (20.7%), respectively. According to ridge analysis, optimal reaction conditions for water activity of lipase, reaction temperature and time were 0.177, 55.66 °C and 29.25 h, respectively, for producing TL with maximum incorporation of CLA. The coefficient of determination (R2=0.94) showed that the fitted model explained 94% of the observation. The TL was reproduced to confirm the experimental incorporation with the estimated value. The data showed that the experimental response was reasonably close to the estimated response. These results suggested that RSM can be used to optimize lipase-catalyzed incorporation of CLA into the fractionated L-RBO.  相似文献   

4.
Interesterified hard fat (IEHF) was produced from fully hydrogenated soybean oil (FHSBO) and rice bran oil (RBO) with different molar ratio (RBO/FHSBO = 1:1, 1:2, and 1:3). For interesterification, Lipozyme TL IM (10% of total substrates) was used as a biocatalyst. Further, coconut oil (CO; 40 wt.% on total weight of RBO and FHSBO) was also added in all reactants for providing medium chain fatty acid. After interesterification, the obtained IEHF and physical blend (before interesterification) with same molar ratio were carried out for comparing the physical properties, (i.e., solid fat content, melting and crystallization behavior, and polymorphic forms). From DSC results at 25 °C, solid fat content of the IEHF with different molar ratio (RBO/FHSBO = 1:1, 1:2, and 1:3) were 33.9%, 58.8%, and 72.1%, respectively, whereas physical blends at same molar ratio showed 66.2%, 71.6%, and 74.8%. Besides, short spacing β crystal polymorphic form was observed in the physical blend while only β′ crystal form was observed in IEHF, in which β′ polymorphic form is a desirable for the production of shortenings and margarines. In Rancimat test for oxidative stability, IEHF showed significantly lower induction time than the physical blend. When the catechin (200, 400, and 800 ppm) was added to the IEHF, induction time was significantly increased to 21.4, 34.1, and 44.3 h, respectively. In this study, IEHF from this study may have a potential functionality for the shortenings and margarines.  相似文献   

5.
Zero‐trans interesterified fats were produced from camellia seed oil (CSO), palm stearin (PS) and coconut oil (CO) with three weight ratios (CSO/PS/CO, 50:50:10, 40:60:10 and 30:70:10) using Lipozyme TL IM. Results showed that the interesterified products contained palmitic acid (34.28–42.96%), stearic acid (3.96–4.72%), oleic acid (38.73–47.95%), linoleic acid (5.92–6.36%) and total medium‐chain fatty acids (MCFA)s (∑MCFAs, 5.03–5.50%). Compared with physical blends, triacylglycerols of OOO and PPP were decreased and formed new peaks of equivalent carbon number (ECN) 44 in the interesterified products. The product CPC3′ showed a slip melting point of 36.8 °C and a wide plastic range of solid fat content (SFC) (45.8–0.4%) at 20–40 °C. Also, the major β′ form was determined. These data indicated that the zero‐trans interesterified fats would have a potential functionality for margarine fats. Subsequently, the antioxidative stabilities of interesterified products with the addition of α‐tocopherol (α‐TOH) and ascorbyl palmitate (AP) were investigated. The results indicated that AP had a dose‐dependent effect at concentrations of 100, 200 and 400 ppm.  相似文献   

6.
Blends of soybean oil (SO) and fully hydrogenated soybean oil (FHSBO), with 10%, 20%, 30%, 40% and 50% FHSBO (w/w) content were interesterified under the following conditions: 0.4% sodium methoxide, 500 rpm stirring, 100 °C, 20 min. The original and interesterified blends were examined for triacylglycerol composition, melting point, solid fat content (SFC) and consistency. Interesterification caused considerable rearrangement of triacylglycerol species, reduction of trisaturated triacylglycerol content and increase in monounsaturated and diunsaturated triacylglycerols, resulting in lowering of respective melting points. The interesterified blends displayed reduced SFC at all temperatures and more linear melting profiles as compared with the original blends. Yield values showed increased plasticity in the blends after the reaction. Isosolid diagrams before and after the reaction showed no eutectic interactions. The 90:10, 80:20, 70:30 and 60:40 interesterified SO:FHSBO blends displayed characteristics suited to application, respectively, as liquid shortening, table margarine, baking/confectionery fat and all-purpose shortenings/biscuit-filling base.  相似文献   

7.
To determine effects of an elevated supply of cis9,trans11-18:2 (9/11CLA) or trans10,cis12-18:2 (10/12CLA) on de novo synthesis and desaturation of long-chain fatty acids, four Holstein cows fed high-oleic sunflower (OLE) or high-linoleic safflower oil (LIN) at 2.5% of DM were infused (0.625 g/h) with 9/11CLA or 10/12CLA for 48 h via the abomasum. Treatments were assigned in a 2 x 2 factorial design. The assigned diets were fed for 11 d before each 48-h infusion period. Milk samples were obtained at 12 and 0 h before infusion and at 12-h intervals from 0 to 96 h. Concentrations of trans11-18:1 and 18:2n-6 in arterial plasma phospholipid, triglyceride, and FFA fractions were greater due to feeding LIN compared with OLE. Infused 9/11CLA and 10/12CLA were incorporated into plasma triglycerides and FFA primarily. Exogenous 10/12CLA also was found in plasma phospholipids. Milk yield and DMI were not affected by treatments. Percentages and yields of protein, lactose, and SNF in milk also were not affected by treatments. Milk fat percentage and yield, however, decreased 25% from 0 to 96 h in response to infusion of 10/12CLA compared with 9/11CLA. Yields of trans11-18:1, 9/11CLA and 18:2n-6 in milk fat before infusion were higher when LIN was fed compared with OLE. Infusion of 9/11CLA, regardless of diet, increased 9/11CLA in milk fat by 44%. Although 10/12CLA was not detectable in milk fat before infusion, it averaged 6 mg/g of total fatty acids and 2 g/d after 48 h. At 48 h, recovery in milk of infused 9/11CLA was 16% compared with 8% for 10/12CLA. Yields of saturated 6:0 to 16:0, cis9-18:1, 9/11CLA, and 20:4n-6 were reduced by 10/12CLA infusion. Due to a 40% increase in the concentration of 18:0 by 48 h of 10/12CLA infusion, however, yield of 18:0 was not affected. Ratios of cis9-18:1/18:0, 9/11CLA/trans11-18:1, and 20:4n-6/18:2n-6 in milk fat decreased in response to infusion of 10/12CLA, regardless of diet. At peak concentration of 10/12CLA, reductions in cis9-18:1 and saturated 4:0-16:0 yields accounted for 36% and 53% of the decrease in total fatty acid yield. Results indicated 10/12CLA alters lipid metabolism in the bovine mammary gland by simultaneously reducing de novo synthesis and desaturation. Furthermore, milk triglyceride synthesis may have a stringent requirement for endogenously synthesized oleic acid.  相似文献   

8.
Conjugated linoleic acid (CLA) is a fatty acid with numerous putative health benefits and is a natural component of ruminant-derived food products. An intermediate in rumen biohydrogenation is cis-9, trans-11 CLA, the major CLA isomer in milk fat. However, the major source of cis-9, trans-11 CLA in milk is endogenous synthesis by delta 9-desaturase conversion of trans-11 C18:1, another rumen biohydrogenation intermediate. The desaturase indices serve as a proxy for delta 9-desaturase activity and are calculated from the ratios of fatty acid pairs that represent product/substrate for this enzyme. This study analyzed individual animal variation in milk fat content of cis-9, trans-11 CLA and in desaturase indices in milk fat. Thirty lactating Holstein cows were allocated to one of three treatment groups: one received a standard total mixed ration, one received a diet that produced an elevated milk fat content of CLA, and a third treatment group was alternated between these diets at 3-wk intervals over the 12-wk study. There was a two- to threefold variation among individuals on the same diet for both milk fat content of CLA and desaturase indices in milk fat. This hierarchy was maintained to a large extent over the 12-wk study even in the variable treatment group that alternated between the two diets. Within the variable diet treatment, some animals consistently had a substantial response in milk fat content of CLA to dietary shifts, whereas other cows had little or no response. We conclude that while diet is a major determinant of the CLA content in milk fat, individual animal differences also have a substantial effect. The variation among individuals includes differences related to both rumen biohydrogenation and delta 9-desaturase activity in the mammary gland.  相似文献   

9.
Solid fat stock was produced from the fractionated rice bran oil (solid phase, S-RBO) and palm stearin (PS) through lipase-catalyzed reaction, in which conjugated linoleic acid (CLA) was intentionally incorporated. For optimizing the reaction, response surface methodology (RSM) was employed with four reaction variables such as water activity, reaction temperature, reaction time, and mole ratio of S-RBO to PS. The predictive model was adequate due to no significant lack of fit and satisfactory level of coefficient of determination (R2 = 0.95). The melting point of solid fat stock was affected by reaction time and substrate mole ratio, whereas water activity and reaction temperature had no significant effect. Based on ridge analysis, the combination of Aw (X1; 0.32), reaction temperature (X2; 65.3 °C), reaction time (X3; 28.9 h), and substrate mole ratio (X4; 1:1.1) was optimized for producing solid fat stock with target melting point of 43.8 °C. The solid fat stock (SFS) contained 39.9% palmitic, 31.3% oleic, 13.2% linoleic acid, and 10.9% CLA isomers. Solid fat contents were 23.4, 10.9, and 2.5% at 20, 30, and 40 °C, respectively. These results suggested that RSM can be used to optimize the lipase-catalyzed production of a solid fat stock.  相似文献   

10.
BACKGROUND: Trans‐free interesterified fat was produced for possible usage as a spreadable margarine stock. Rice bran oil, palm stearin and coconut oil were used as substrates for lipase‐catalyzed reaction. RESULTS: After interesterification, 137–150 g kg?1 medium‐chain fatty acid was incorporated into the triacylglycerol (TAG) of the interesterified fats. Solid fat contents at 25 °C were 15.5–34.2%, and slip melting point ranged from 27.5 to 34.3 °C. POP and PPP (β‐tending TAG) in palm stearin decreased after interesterification. X‐ray diffraction analysis demonstrated that the interesterified fats contained mostly β′ polymorphic forms, which is a desirable property for margarines. CONCLUSIONS: The interesterified fats showed desirable physical properties and suitable crystal form (β′ polymorph) for possible use as a spreadable margarine stock. Therefore, our result suggested that the interesterified fat without trans fatty acid could be used as an alternative to partially hydrogenated fat. Copyright © 2010 Society of Chemical Industry  相似文献   

11.
Feeding conjugated linoleic acid (CLA) reduces milk fat synthesis in lactating dairy cows, and the effect has been shown to be specific for the trans-10, cis-12 CLA isomer. Our objectives were to examine potential mechanisms by which trans-10, cis-12 CLA inhibits milk fat synthesis. Multiparous Holstein cows (n = 4) in late lactation were used in a balanced 2 x 2 crossover design. Treatments consisted of a 5 d abomasal infusion of either skim milk (control) or purified trans-10, cis-12 CLA (13.6 g/d) emulsified in skim milk. On d 5 of infusion, mammary gland biopsies were performed and a portion of the tissue analyzed for mRNA expression of acetyl CoA carboxylase, fatty acid synthetase, delta 9-desaturase, lipoprotein lipase, fatty acid binding protein, glycerol phosphate acyltransferase and acylglycerol phosphate acyltransferase. Lipogenic capacity was evaluated with another portion of the tissue. Infusion of trans-10, cis-12 CLA decreased milk fat content and yield 42 and 48%, respectively and increased the trans-10, cis-12 CLA content in milk fat from < 0.1 to 4.9 mg/g. Reductions in milk fat content of C4 to C16 fatty acids contributed 63% to the total decrease in milk fat yield (molar basis). Analysis of the ratios of specific fatty acid pairs indicated trans-10, cis-12 CLA also shifted fatty acid composition in a manner consistent with a reduction in delta 9-desaturase. Mammary explant incubations with radiolabeled acetate established that lipogenic capacity was decreased 82% and acetate oxidation to CO2 was reduced 61% when cows received trans-10, cis-12 CLA. Infusing trans-10, cis-12 CLA also decreased the mRNA expression of all measured enzymes by 39 to 54%. Overall, data demonstrated the mechanism by which trans-10, cis-12 CLA inhibits milk fat synthesis includes decreasing expression of genes that encode for enzyme involved in circulating fatty acid uptake and transport, de novo fatty acid synthesis, desaturation of fatty acids and triglyceride synthesis.  相似文献   

12.
Soybean oil (SBO), palm kernel olein (PKO) and their binary blends (containing 5–40% PKO) were studied for their physicochemical characteristics. Decreases in band absorbencies of the resultant Fourier transform infrared spectra were observed in regions attributable to vibrations of the functional groups of unsaturated fatty acids, mainly the =C–H cis stretching at 3009 cm−1and –C=C cis stretching at 1657 cm−1. The solid fat content was measurable in the blends containing 15–40% PKO at 5 and 10 °C, ranging within 4–20% and 2–13%, respectively. The differential scanning calorimetry melting curve for SBO exhibited more complex transition peaks, suggesting a     polymorphic transformation when compared with PKO with a simpler     . Blending of SBO with PKO reduced the complexity caused by the polymorphic transformation, featuring the endotherms that only related to the β' fat crystals.  相似文献   

13.
Effects on fatty acid profiles and milk fat yield due to dietary concentrate and supplemental 18:3n-3 were evaluated in 4 lactating Holstein cows fed a low- (35:65 concentrate:forage; L) or high- (65:35; H) concentrate diet without (LC, HC) added oil or with linseed oil (LCO, HCO) at 3% of DM. A 4 x 4 Latin square with four 4-wk periods was used. Milk yield and dry matter intake averaged 26.7 and 20.2 kg/d, respectively, across treatments. Plasma acetate and beta-hydroxybutyrate decreased, whereas glucose, nonesterified fatty acids, and leptin increased with high-concentrate diets. Milk fat percentage was lower in cows fed high-concentrate diets (2.31 vs. 3.38), resulting in decreases in yield of 11 (HC) and 42% (HCO). Reduced yields of 8:0-16:0 and cis9-18:1 fatty acids accounted for 69 and 17%, respectively, of the decrease in milk fat yield with HC vs. LC (-90 g/d), and for 26 and 33%, respectively, of the decrease with HCO vs. LCO (-400 g/d). Total trans-18:1 yield increased by 25 (HCO) and 59 (LCO) g/d with oil addition. Trans10-18:1 yield was 5-fold greater with high-concentrate diets. Trans11-18:1 increased by 13 (HCO) and 19 (LCO) g/d with oil addition. Trans13+14-18:1 yield increased by 9 (HCO) and 18 (LCO) g/d with linseed oil. Yield of total conjugated linoleic acids (CLA) in milk averaged 6 g/d with LC or HC compared with 14 g/d with LCO or HCO. Cis9,trans11-CLA yield was not affected by concentrate level but increased by 147% in response to oil. Feeding oil increased yields of trans11,cis13-, trans11,trans13-, and trans,trans-CLA, primarily with LCO. Trans10,cis12-CLA yield (average of 0.08 g/d) was not affected by treatments. Yield of trans11,cis15-18:2 was 1 g/d in cows fed LC or HC and 10 g/d with LCO or HCO. Yields of cis9,trans11-18:2, cis9,trans12-18:2, and cis9,trans13-18:2 were positively correlated (r = 0.74 to 0.94) with yields of trans11-18:1, trans12-18:1, and trans13+14-18:1, respectively. Plasma concentrations of biohydrogenation intermediates with concentrate or linseed oil level followed similar changes as those in milk fat. Milk fat depression was observed when HC induced an increase in trans10-18:1 yield. A correlation of 0.84 across 31 comparisons from 13 published studies, including the present one, was found among the increase in percentage of trans10-18:1 in milk fat and decreased milk fat yield. We observed, however, more drastic milk fat depression when HCO increased yields of total trans-18:1, trans11,cis15-18:2, trans isomers of 18:3, and reduced yields of 18:0 plus cis9-18:1.  相似文献   

14.
New Zealand Holstein-Friesian cows (n = 4) were used to quantify the importance of endogenous synthesis of cis-9, trans-11 conjugated linoleic acid (CLA) via Delta(9)-desaturase in cows fed a fresh pasture diet. The experiment was a 4 x 4 Latin square design with treatments arranged in a 2 x 2 factorial. Treatments lasted 4 d and were pasture only, pasture plus sterculic oil, pasture plus sunflower oil, and pasture plus sunflower oil plus sterculic oil. Abomasal infusion of sterculic oil inhibited Delta(9)-desaturase and decreased the concentration of cis-9, trans-11 CLA in milk fat by 70%. Using the changes in cis-9 10:1, cis-9 12:1 and cis-9 14:1 to correct for incomplete inhibition of Delta(9)-desaturase, a minimum estimate of 91% of cis-9, trans-11 CLA in milk fat was produced endogenously in cows fed fresh pasture. Dietary supplementation of a pasture diet with sunflower oil increased the proportion of long chain fatty acids in milk fat; however, the increase in vaccenic acid concentration was small (18%) and there was no increase in cis-9, trans-11 CLA concentration. Overall, results show that endogenous synthesis is responsible for more than 91% of the cis-9, trans-11 CLA secreted in milk fat of cows fed fresh pasture. However, the failure of plant oil supplements to increase the concentration of cis-9, trans-11 CLA in milk fat from pasture-fed cows requires further investigation.  相似文献   

15.
Feeding conjugated linoleic acid (CLA) in a rumen-inert form to dairy ewes has been shown to increase milk production, alter milk composition, and increase the milk fat CLA content. However, few studies have tested ruminally unprotected CLA sources. The objective of this study was to evaluate the effects of an unprotected CLA supplement (29.8% of cis-9,trans-11 and 29.9% of trans-10,cis-12 isomers as methyl esters) on milk yield and composition of dairy ewes. Twenty-four lactating Lacaune ewes were used in a crossover design and received 2 dietary treatments: (1) control: basal diet containing no supplemental lipid and (2) basal diet plus CLA (30 g/d). The CLA supplement was mixed into the concentrate and fed in 2 equal meals after morning and afternoon milkings. Each experimental period consisted of 21 d: 7 d for adaptation and 14 d for data collection. The CLA supplement decreased milk fat content and yield by 31.3 and 38.0%, respectively. Milk yield and secretion of milk lactose and protein were decreased by 8.0, 9.8, and 5.6%, respectively. On the other hand, milk protein content and linear SCC score were 1.8 and 17.7% higher in ewes fed the CLA supplement. The concentration of milk fatty acids originating from de novo synthesis (C16) was increased by 22.6% in ewes fed the CLA supplement. The CLA supplement decreased C14:1/C14:0, C16:1/C16:0, and C18:1/C18:0 desaturase indexes by 25, 18.7, and 0.1%, respectively, but increased the cis-9,trans-11 CLA/trans-11 C18:1 ratio by 8.6%. The concentrations of trans-10,cis-12 CLA and cis-9,trans-11 CLA in milk fat was 309 and 33.4% higher in ewes fed CLA. Pronounced milk fat depression coupled with the deleterious effects on milk yield, milk SCC, and secretion of all milk solids observed in ewes fed an unprotected CLA supplement is likely to be associated with high doses of trans-10,cis-12 CLA reaching the mammary gland, corroborating previous results obtained with dairy cows.  相似文献   

16.
Dairy products are the main source of conjugated linoleic acid (CLA), a functional food component with health benefits. The major source of cis-9, trans-11 CLA in milk fat is endogenous synthesis via delta9-desaturase from trans-11 18:1, with the remainder from incomplete rumen biohydrogenation of linoleic acid. Diet has a major influence on milk fat CLA; however, effects of physiological factors have received little attention. Our objectives were to examine milk fat content of CLA and the CLA-desaturase index with regard to: 1) effect of breed, parity, and stage of lactation, and 2) variation among individuals and the relationship to milk and milk fat. Holstein (n = 113) and Brown Swiss (n = 106) cows were fed a single diet and milk sampled on the same day to avoid confounding effects of diet and season. Frequency distributions demonstrated that milk fat content of CLA and CLA-desaturase index varied over threefold among individuals, and this needs to be considered in the design of experiments. Holsteins had a higher milk fat content of CLA and CLA-desaturase index, but breed differences were minor. Parity and days in milk also had little or no relationship to the individual variation for these two CLA variables. Breed, parity, and days in milk accounted for < 0.1, < 0.3, and < 2.0% of total variation in CLA concentration in milk fat, respectively. Milk fat content of CLA and CLA-desaturase index were essentially independent of milk yield, milk fat percent, and milk fat yield. We speculate that the basis for the genetic variation among individuals is related to rumen output of trans-11 18:1 and to a lesser extent cis-9, trans-11 CLA, and to the tissue amount and activity of delta9-desaturase.  相似文献   

17.
Medium‐ and long‐chain triacylglycerols (MLCTs)–enriched structured lipid (SL) was synthesised through enzymatic interesterification from Cinnamomum camphora seed oil (CCSO) and camellia oil (CO) using Lipozyme RM IM from Rhizomucor miehei as a biocatalyst. Effects of different reaction conditions including substrate molar ratio, reaction time and reaction temperature were investigated. Results showed that 55.81% of total MLCT species (CCO/LaCL, LaCO/LCL, COO/OCO and LaOO/OLaO) was obtained in the interesterified product under the optimal conditions of substrate molar ratio of 1:1.5 (CCSO/CO) at 60 °C for 3 h. Thereafter, fatty acid profiles, tocopherol contents and physiochemical characteristics of the interesterified product and physical blend were comparatively investigated. The fatty acid composition of the interesterified product consisted of capric acid (26.33%), lauric acid (21.29%) and oleic acid (42.33%). It should be mentioned that the interesterified product contained predominantly oleic acid (88.69%) at Sn‐2 position, while MCFAs (68.05%) at Sn‐1,3 positions. Compared with physical blend, the reduction in tocopherol contents and changes of physiochemical characteristics occurred in SL. The smoke point of the interesterified product was much higher than that of the physical blend, which meant that such MLCTs‐enriched SL could be better for cooking purpose.  相似文献   

18.
Short-term studies (< 5 d) involving abomasal infusion of a mixture of CLA isomers or pure trans-10, cis-12 CLA have demonstrated that supplements of conjugated linoleic acids (CLA) reduce milk fat synthesis during established lactation in dairy cows. Our objective was to assess longer term effects of supplementation during established lactation using a dietary supplement of rumen-protected CLA. Thirty Holstein cows were blocked by parity and received a dietary fat supplement of either Ca-salts of palm oil fatty acids (control) or a mixture of Ca-salts of palm oil fatty acids plus Ca-salts of CLA (CLA treatment). Supplements provided about 90 g/d of fatty acids and were topdressed on the TMR. The CLA supplement provided 30.4 g/d of CLA in which the predominant isomers were: trans-8, cis-10 (9.2%), cis-9, trans-11 (25.1%), trans-10, cis-12 (28.9%), and cis-11, trans-13 (16.1%). All cows were pregnant; treatments were initiated on d 79 of pregnancy (approximately 200 d prepartum) and continued for 140 d until dry off. Twenty-three cows completed the study; those receiving CLA supplement had a lower milk fat test (2.90 versus 3.80%) and a 23% reduction in milk fat yield (927 versus 1201 g/d). Intake of DM, milk yield, and the yield and content of true protein and lactose in milk were unaffected by treatment. Milk fat analysis indicated that the CLA supplement reduced the secretion of fatty acids of all chain lengths. However, effects were proportionally greater on short and medium chain fatty acids, thereby causing a shift in the milk fatty acid composition to a greater content of longer-chain fatty acids. Changes in body weight gain, body condition score, and net energy balance were not significant and imply no differences in cows fed the CLA supplement in replenishment of body reserves in late lactation. Likewise, maintenance of pregnancy, gestation length, and calf birth weight were unaffected by treatment. Overall, feeding a dietary supplement of rumen-protected CLA to pregnant cows over the last 140 d of the lactation cycle resulted in a marked reduction in milk fat content and yield, and a shift in milk fatty acid composition, but other milk components, DMI, maintenance of pregnancy, and cow well-being were unaffected.  相似文献   

19.
Production of conjugated fatty acids by lactic acid bacteria   总被引:3,自引:0,他引:3  
Conjugated fatty acids have attracted much attention as a novel type of biologically beneficial functional lipid. Some isomers of conjugated linoleic acid (CLA) reduce carcinogenesis, atherosclerosis, and body fat. Considering the use of CLA for medicinal and nutraceutical purposes, a safe isomer-selective process is required. The introduction of biological reactions for CLA production could be an answer. We screened microbial reactions useful for CLA production, and found several unique reactions in lactic acid bacteria. Lactic acid bacteria produced CLA from linoleic acid. The produced CLA comprised a mixture of cis-9,trans-11-octadecadienoic acid (18:2) and trans-9,trans-11-18:2. Lactobacillus plantarum AKU 1009a was selected as a potential CLA producer. Using washed cells of L. plantarum AKU 1009a as a catalyst, CLA production from linoleic acid reached 40 mg/ml under the optimized conditions. The CLA-producing reaction was found to consist of two successive reactions, i.e., hydration of linoleic acid to 10-hydroxy-12-octadecenoic acid and dehydrating isomerization of the hydroxy fatty acid to CLA. On the basis of these results, the transformation of hydroxy fatty acids by lactic acid bacteria was investigated. Lactic acid bacteria transformed ricinoleic acid (12-hydroxy-cis-9-octadecenoic acid) to CLA (a mixture of cis-9,trans-11-18:2 and trans-9,trans-11-18:2). Castor oil, which is rich in the triacylglycerol form of ricinoleic acid, was also found to act as a substrate for CLA production by lactic acid bacteria with the aid of lipase-catalyzed triacylglycerol hydrolysis. L. plantarum AKU 1009a produced conjugated trienoic fatty acids from alpha- and gamma-linolenic acid. The trienoic fatty acids produced from alpha-linolenic acid were identified as cis-9,trans-11,cis-15-octadecatrienoic acid (18:3) and trans-9,trans-11,cis-15-18:3. Those produced from gamma-linolenic were cis-6,cis-9,trans-11-18:3 and cis-6,trans-9,trans-11-18:3. The conjugated trienoic fatty acids produced from alpha- and gamma-linolenic acid were further saturated by L. plantarum AKU 1009a to trans-10,cis-15-18:2 and cis-6,trans-10-18:2, respectively.  相似文献   

20.
Unidentified constituents in fresh pasture increase milk fat cis-9, trans-11 conjugated linoleic acid (CLA) concentration, and prevent milk fat depression, even though ruminal conditions conducive to reducing milk fat synthesis exist. One possible explanation is vitamin E (kappa-tocopherol), a constituent high in fresh pasture, but naturally low in conserved/dried forages and cereal grains. Twenty late-lactating dairy cows previously consuming a total mixed ration (TMR) were randomly allocated to one of two dietary treatments for 21 d: TMR (control; n=10); and TMR plus an additional 10,000 i.u. alpha-tocopherol/d (VIT E; n = 10). These cows were simultaneously compared with 13 late-lactation dairy cows previously grazing fresh pasture (PAS) balanced for age, parity and genetic merit. Average daily alpha-tocopherol intakes were approximately 468, 10,520 and 1,590 i.u./cow for the control, VIT E and PAS treatments, respectively. Dietary alpha-tocopherol supplementation (VIT E v. control) slightly increased milk fat content by 0.23 percentage units, but did not significantly alter milk fatty acid composition. Plasma trans-11 18:1 (VA) content tended to increase and trans-10 18:1 levels numerically declined following alpha-tocopherol supplementation suggesting possible changes in rumen biohydrogenation products. In addition, increased alpha-tocopherol intake in TMR-fed cows decreased serum urea levels and tended to alter milk fat 15:0 suggesting changes in rumen microbial populations. However, when compared with cows grazing pasture, TMR-fed cows supplemented with alpha-tocopherol, still produced milk with lower cis-9, trans-11 CLA and VA, and higher trans-10 18:1 concentrations suggesting alpha-tocopherol is not a primary reason for milk fatty acid profile differences between pasture and TMR-fed cows. Therefore, additional unknown pasture constituents favour production of fatty acids originating from the cis-9, trans-11 instead of the trans-10, cis-12 CLA biohydrogenation pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号