首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Geographic routing in wireless sensor networks requires sources nodes to be aware of the location information of sinks to send their data. To provide the sink location service, quorum-based schemes have been proposed, which exploit crossing points between a quorum of a sink location announcement (SLA) message from a sink and a quorum of a sink location query (SLQ) message from a source node. For guaranteeing at least one crossing point in irregular sensor networks with void areas or irregular boundaries, the previous schemes however collect and flood the network boundary information or forward a SLA and SLQ message along the whole network boundary. In this paper, we design a novel quorum-based sink location service scheme that exploits circle and line quorums, which does not require the network boundary information and send a SLA and SLQ message along the whole network boundary. In the proposed scheme, a source node sends a SLQ message to the network center and sends another SLQ message to an edge node in the network boundary, thus generating a SLQ line quorum. On the other hand, a sink node sends a SLA message along a circle path whose center is the network center, thus forming a SLQ circle quorum. By this way, it is guaranteed that the SLQ and SLA quorums have at least one crossing point in irregular sensor networks. Both numerical analysis and extensive simulation results verify that the proposed scheme outperforms the existing schemes in terms of the delivery distance, the delivery hop count, and the energy consumption for providing sink location service.  相似文献   

2.
邹赛  汪文勇  唐勇  张骏 《通信学报》2013,34(Z1):36-275
在异构无线传感器网络模型下,针对采集节点发送数据能量消耗过高及路由时分组丢失率过大等情况,对数据汇聚节点的位置优化及路由进行了研究,提出了移动汇聚节点位置优化路由算法(MLOYIH)。先根据蚁群算法的原理对移动节点与静态节点进行分组,再在组内寻找适合的位置放置汇聚节点,最后根据供电情况,选择合适的跳算进行路由。经过仿真实验与性能分析表明,MLOYIH算法与传统算法比较,能量消耗降低到64%,分组丢失率不高于3%。  相似文献   

3.
Ward  Jon R.  Younis  Mohamed 《Wireless Networks》2019,25(5):2869-2887
Wireless Networks - In most Wireless Sensor Network (WSN) applications the sensor nodes forward their measurements to a central base station (BS). The unique role of the BS makes it a natural...  相似文献   

4.
Relative location estimation in wireless sensor networks   总被引:15,自引:0,他引:15  
Self-configuration in wireless sensor networks is a general class of estimation problems that we study via the Cramer-Rao bound (CRB). Specifically, we consider sensor location estimation when sensors measure received signal strength (RSS) or time-of-arrival (TOA) between themselves and neighboring sensors. A small fraction of sensors in the network have a known location, whereas the remaining locations must be estimated. We derive CRBs and maximum-likelihood estimators (MLEs) under Gaussian and log-normal models for the TOA and RSS measurements, respectively. An extensive TOA and RSS measurement campaign in an indoor office area illustrates MLE performance. Finally, relative location estimation algorithms are implemented in a wireless sensor network testbed and deployed in indoor and outdoor environments. The measurements and testbed experiments demonstrate 1-m RMS location errors using TOA, and 1- to 2-m RMS location errors using RSS.  相似文献   

5.
Sink scheduling, in the form of scheduling multiple sinks among the available sink sites to relieve the level of traffic burden, is shown to be a promising scheme in wireless sensor networks (WSNs). However, the problem of maximizing the network lifetime via sink scheduling remains quite a challenge since routing issues are tightly coupled. Previous approaches on this topic either suffer from poor performance due to a lack of joint considerations, or are based on relaxed constraints. Therefore, in this paper, we aim to fill in the research blanks. First, we develop a novel notation Placement Pattern (PP) to bound time-varying routes with the placement of sinks. This bounding technique transforms the problem from time domain into pattern domain, and thus, significantly decreases the problem complexity. Then, we formulate this optimization in a pattern-based way and create an efficient Column Generation (CG) based approach to solve it. Simulations not only demonstrate the efficiency of the proposed algorithm but also substantiate the importance of sink mobility for energy-constrained WSNs.  相似文献   

6.
This paper studies on delivery-guaranteed and effective data dissemination for mobile sink groups in wireless sensor networks. A mobile sink group denotes a set of tightly coupled mobile sinks for team collaborations such as a team of firefighters and a group of solders. The mobile sinks have a group movement feature. They thus randomly move in personal spaces as well as collectively move together as a single entity. To support such group mobility, previous studies provide circle-based protocols determining successive circular areas of a group continuously moving, and then propagate data in the areas by flooding. However, since a group is still moving during decision of each circle, they may cause asynchrony between circles and actual group positions. Eventually, it could harm reachability and energy-efficiency. We therefore propose a novel data dissemination protocol using motion properties of a mobile sink group: slowly varying and streamlike movement. By the slowly varying constraint, the protocol predictively and effectively delivers data to a group through a band of sensor nodes located in front of the streamlike trajectory of the group.  相似文献   

7.
Controlled sink mobility for prolonging wireless sensor networks lifetime   总被引:3,自引:0,他引:3  
This paper demonstrates the advantages of using controlled mobility in wireless sensor networks (WSNs) for increasing their lifetime, i.e., the period of time the network is able to provide its intended functionalities. More specifically, for WSNs that comprise a large number of statically placed sensor nodes transmitting data to a collection point (the sink), we show that by controlling the sink movements we can obtain remarkable lifetime improvements. In order to determine sink movements, we first define a Mixed Integer Linear Programming (MILP) analytical model whose solution determines those sink routes that maximize network lifetime. Our contribution expands further by defining the first heuristics for controlled sink movements that are fully distributed and localized. Our Greedy Maximum Residual Energy (GMRE) heuristic moves the sink from its current location to a new site as if drawn toward the area where nodes have the highest residual energy. We also introduce a simple distributed mobility scheme (Random Movement or RM) according to which the sink moves uncontrolled and randomly throughout the network. The different mobility schemes are compared through extensive ns2-based simulations in networks with different nodes deployment, data routing protocols, and constraints on the sink movements. In all considered scenarios, we observe that moving the sink always increases network lifetime. In particular, our experiments show that controlling the mobility of the sink leads to remarkable improvements, which are as high as sixfold compared to having the sink statically (and optimally) placed, and as high as twofold compared to uncontrolled mobility. Stefano Basagni holds a Ph.D. in electrical engineering from the University of Texas at Dallas (December 2001) and a Ph.D. in computer science from the University of Milano, Italy (May 1998). He received his B.Sc. degree in computer science from the University of Pisa, Italy, in 1991. Since Winter 2002 he is on faculty at the Department of Electrical and Computer Engineering at Northeastern University, in Boston, MA. From August 2000 to January 2002 he was professor of computer science at the Department of Computer Science of the Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas. Dr. Basagni’s current research interests concern research and implementation aspects of mobile networks and wireless communications systems, Bluetooth and sensor networking, definition and performance evaluation of network protocols and theoretical and practical aspects of distributed algorithms. Dr. Basagni has published over four dozens of referred technical papers and book chapters. He is also co-editor of two books. Dr. Basagni served as a guest editor of the special issue of the Journal on Special Topics in Mobile Networking and Applications (MONET) on Multipoint Communication in Wireless Mobile Networks, of the special issue on mobile ad hoc networks of the Wiley’s Interscience’s Wireless Communications & Mobile Networks journal, and of the Elsevier’s journal Algorithmica on algorithmic aspects of mobile computing and communications. Dr. Basagni serves as a member of the editorial board and of the technical program committee of ACM and IEEE journals and international conferences. He is a senior member of the ACM (including the ACM SIGMOBILE), senior member of the IEEE (Computer and Communication societies), and member of ASEE (American Society for Engineering Education). Alessio Carosi received the M.S. degree “summa cum laude” in Computer Science in 2004 from Rome University “La Sapienza.” He is currently a Ph.D. candidate in Computer Science at Rome University “La Sapienza.” His research interests include protocols for ad hoc and sensor networks, underwater systems and delay tolerant networking. Emanuel Melachrinoudis received the Ph.D. degree in industrial engineering and operations research from the University of Massachusetts, Amherst, MA. He is currently the Director of Industrial Engineering and Associate Chairman of the Department of Mechanical and Industrial Engineering at Northeastern University, Boston, MA. His research interests are in the areas of network optimization and multiple criteria optimization with applications to telecommunication networks, distribution networks, location and routing. He is a member of the Editorial Board of the International Journal of Operational Research. He has published in journals such as Management Science, Transportation Science, Networks, European Journal of Operational Research, Naval Research Logistics and IIE Transactions. Chiara Petrioli received the Laurea degree “summa cum laude” in computer science in 1993, and the Ph.D. degree in computer engineering in 1998, both from Rome University “La Sapienza,” Italy. She is currently Associate Professor with the Computer Science Department at Rome University “La Sapienza.” Her current work focuses on ad hoc and sensor networks, Delay Tolerant Networks, Personal Area Networks, Energy-conserving protocols, QoS in IP networks and Content Delivery Networks where she contributed around sixty papers published in prominent international journals and conferences. Prior to Rome University she was research associate at Politecnico di Milano and was working with the Italian Space agency (ASI) and Alenia Spazio. Dr. Petrioli was guest editor of the special issue on “Energy-conserving protocols in wireless Networks” of the ACM/Kluwer Journal on Special Topics in Mobile Networking and Applications (ACM MONET) and is associate editor of IEEE Transactions on Vehicular Technology, the ACM/Kluwer Wireless Networks journal, the Wiley InterScience Wireless Communications & Mobile Computing journal and the Elsevier Ad Hoc Networks journal. She has served in the organizing committee and technical program committee of several leading conferences in the area of networking and mobile computing including ACM Mobicom, ACM Mobihoc, IEEE ICC,IEEE Globecom. She is member of the steering committee of ACM Sensys and of the international conference on Mobile and Ubiquitous Systems: Networking and Services (Mobiquitous) and serves as member of the ACM SIGMOBILE executive committee. Dr. Petrioli was a Fulbright scholar. She is a senior member of IEEE and a member of ACM. Z. Maria Wang received her Bachelor degree in Electrical Engineering with the highest honor from Beijing Institute of Light Industry in China, her M.S. degree in Industrial Engineering/Operations Research from Dalhousie University, Canada and her Ph.D. in Industrial Engineering/Operations Research from Northeastern University, Boston. She served as a R&D Analyst for General Dynamics. Currently MS. Wang serves as an Optimization Analyst with Nomis Solutions, Inc.  相似文献   

8.
In challenging environment, sensory data must be stored inside the network in case of sink failures, we need to redistribute overflowing data items from the depleted storage source nodes to sensor nodes with available storage space and residual energy. We design a distributed energy efficient data storage algorithm named distributed data preservation with priority (D2P2). This algorithm takes both data redistribution costs and data retrieval costs into account and combines these two problems into a single problem. D2P2 can effectively realize data redistribution by using cooperative communication among sensor nodes. In order to solve the redistribution contention problem, we introduce the concept of data priority, which can avoid contention consultations between source nodes and reduce energy consumption. Finally, we verify the performance of the proposed algorithm by both theory and simulations. We demonstrate that D2P2's performance is close to the optimal centralized algorithm in terms of energy consumption and shows superiority in terms of data preservation time.  相似文献   

9.
Network performance can be improved by using a mobile sink (MS) to collect sensed data in a wireless sensor network. In this paper, we design an efficient trajectory for MS, collecting data from sensor nodes in a multihop fashion, with the aim of prolonging the network lifetime. Considering event‐driven applications, we present an approach to jointly determine the optimal trajectory for MS and data paths and transmission rates from source nodes to MS, without considering any rendezvous points. In these applications, an MS is supposed to harvest the data from source nodes in a given time‐slot. We first show that this problem is in form of a mixed integer nonlinear programming model, which is NP‐hard. Then, to achieve an approximate solution, we divide the mentioned problem into 2 simple subproblems. In fact, after determining an approximate zone for the trajectory of MS, the optimal data paths and transmission rates from source nodes to the MS are obtained through a mathematical optimization model. Finally, to illustrate the efficiency of the proposed approach, we compare the performance of our algorithm to an rendezvous point–based and also the state‐of‐the‐art approach in different scenarios.  相似文献   

10.
无线传感器网络混合定位技术研究   总被引:1,自引:0,他引:1  
在大规模复杂无线传感器网络中往往采用多种节点定位技术,在此结合现有无线传感器定位技术的现状,提出了一种混合定位技术以实现不同定位方法之间的互补。一方面利用RSSI定位弥补TDOA定位覆盖范围小的缺点;另一方面将测距信息引入到非测距定位DV—Hop算法中,用RSSI测距模型来提高DV-Hop算法中定位节点与信标节点间有效距离的精度。实验结果表明,该混合定位技术实现了TDOA,RSSI以及DV-HOP等定位技术的融合,有效地提高了复杂大规模无线传感器网络的节点定位精度。  相似文献   

11.
12.
无线传感器网络节点定位技术综述   总被引:2,自引:0,他引:2  
曹小红  李颖  丰皇 《信息技术》2009,(7):233-235,240
无线传感器网络在许多领域有着重要的科研和使用价值,网络中传感器节点自身定位可为无线传感器网络的很多应用提供基础信息,是重要研究方向之一.从无线传感器网络节点定位技术的研究意义与应用价值出发,介绍了节点定位技术的基本原理与方法,并讨论了定位算法的评价标准,最后对节点定位技术的发展方向进行了展望.  相似文献   

13.
唐伟  郭伟 《通信学报》2010,31(9):1-7
将基站位置选择及节能路由优化联合考虑,定义了最短路径树剖分,分析了二维空间中剖分单元的结构与相邻剖分单元搜索算法,并设计了3种启发式算法.通过仿真实验对算法性能进行了分析与对比,结果表明所提出的启发式算法的性能有效地接近或者收敛于全局最优解.  相似文献   

14.
E.  S.  J.  D.   《Ad hoc Networks》2008,6(2):195-209
Security plays an important role in the ability to deploy and retrieve trustworthy data from a wireless sensor network. Location verification is an effective defense against attacks which take advantage of a lack, or compromise, of location information. In this work, a secure probabilistic location verification method for randomly deployed dense sensor networks is proposed. The proposed Probabilistic Location Verification (PLV) algorithm leverages the probabilistic dependence of the number of hops a broadcast packet traverses to reach a destination and the Euclidean distance between the source and the destination. A small number of verifier nodes are used to determine the plausibility of the claimed location, which is represented by a real number between zero and one. Using the calculated plausibility metric, it is possible to create arbitrary number of trust levels in the location claimed. Simulation studies verify that the proposed solution provides high performance in face of various types of attacks.  相似文献   

15.
Several studies have demonstrated the benefits of using a mobile sink (MS) to reduce energy consumption resulting from multi-hop data collection using a static sink in wireless sensor networks (WSNs). However, using MS may increase data delivery latency as it needs to visit each sensor node in the network to collect data. This is a critical issue in delay-sensitive applications where all sensed data must be gathered within a given time constraint. In this paper, we propose a distributed data gathering protocol utilizing MS for WSNs. The proposed protocol designs a trajectory for the MS, which minimizes energy consumption and delay. Our protocol operates in four main phases: data sensing, rendezvous point (RP) selection, trajectory design, and data gathering. In data sensing, a number of deployed sensor nodes keep sensing the target field for a specific period of time to capture events. Then, using a cluster-based RP selection algorithm, some sensor nodes are selected to become RPs based on local information. The selected RPs are then used to determine a trajectory for the MS. To do so, we propose three trajectory design algorithms that support different types of applications, namely reduced energy path (REP), reduced delay path (RDP), and delay bound path (DBP). The MS moves through the constructed path to accomplish its data gathering according to an effective scheduling technique that is introduced in this work. We validate the proposed protocol via extensive simulations over several metrics such as energy, delay, and time complexity.  相似文献   

16.
17.
As the applications of wireless sensor networks proliferate, the efficiency in supporting large sensor networks and offering security guarantees becomes an important requirement in the design of the relevant networking protocols. Geographical routing has been proven to efficiently cope with large network dimensions while trust management schemes have been shown to assist in defending against routing attacks. Once trust information is available for all network nodes, the routing decisions can take it into account, i.e. routing can be based on both location and trust attributes. In this paper, we investigate different ways to incorporate trust in location‐based routing schemes and we propose a novel way of balancing trust and location information. Computer simulations show that the proposed routing rule exhibits excellent performance in terms of delivery ratio, latency time and path optimality. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
唐伟  郭伟 《通信学报》2010,31(11):65-72
结合节能路由算法,研究以最小化网络总能耗为目标的基站位置选择问题.将基站位置候选集为有限集的情形化归为整数线性规划问题,并将候选集为全空间的情形化归为非线性规划问题.由于问题的NP-完全性质,分别针对2种情形设计了相应的启发式算法.通过仿真实验对所提出算法的性能进行验证,结果表明所提算法性能接近最优解.  相似文献   

19.
On providing location privacy for mobile sinks in wireless sensor networks   总被引:2,自引:0,他引:2  
A common practice in sensor networks is to collect sensing data and report them to the sinks or to some pre-defined data rendezvous points via multi-hop communications. Attackers may locate the sink easily by reading the destination field in the packet header or predicting the arrival of the sink at the rendezvous points, which opens up vulnerabilities to location privacy of the sinks. In this paper, we propose a random data collection scheme to protect the location privacy of mobile sinks in wireless sensor networks. Data are forwarded along random paths and stored at the intermediate nodes probabilistically in the network. The sinks will move around randomly to collect data from the local nodes occasionally, which prevents the attackers from predicting their locations and movements. We analyze different kind of attacks threatening the location privacy of the sinks in sensor networks. We also evaluate the delivery rate, data collection delay and protection strength of our scheme by both analysis and simulations. Both analytical and simulation results show that our scheme can protect location privacy of mobile sinks effectively, while providing satisfactory data collection services.  相似文献   

20.
Wireless Sensor Networks have been widely deployed in military and civilian applications. Due to the nature of the sensor network, it is easy for an adversary to trace the movement of packets and get the sink location. Many ways have been proposed to deal with this problem, most of them provide path diversity. But these techniques always expose direction information. Once adversaries have got the direction information, they can launch a direction attack by deducing the direction of the sink and choosing right paths to trace. To cope with the direction attack, we present an improved scheme based on injecting fake packets and random walk of real packets. In this scheme, real packets do a random walk to hide direction information at a special phase, fake packets are injected in intersection nodes of two or more shortest paths, which can lead adversaries to fake paths. Privacy analysis shows that our scheme has a good performance on protecting sink location. We also examine the delivery time, energy consumption and safe time by simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号