共查询到17条相似文献,搜索用时 46 毫秒
1.
为了研究光电材料CdS在有机白光器件中增加电子注入的特性,将结构为ITO/NPB/Rubrene/NPB/DPVBi/Alq3/LiF/Al的白光器件,不插入CdS薄层或将CdS薄层分别插入到NPB和ITO之间以及Alq3和LiF之间或同时将CdS薄层插入到它们之间,制作了四个元器件。通过研究得出,在Alq3和LiF之间插入CdS薄层的器件,在同等条件下性能较好。性能的改善来自于CdS薄层的引入使器件电子注入增加,激子形成的数量和比率也获得了相应的提高,从而提高了器件的亮度和效率。 相似文献
2.
3.
将光电材料硫化镉(CdS)薄层插入到结构为ITO/NPB/Rubrene/NPB/DPVBi/Alq3/LiF/Al的白光有机发光器件(OLED)的Alq3和LiF之间,研究了CdS对OLED性能的影响。结果表明,0.1nm厚的CdS插入Alq3和LiF之间的器件性能最好。器件电压从7 V变化到14 V时,色度均在白光的中心区域;当电压为7V时,器件的最大电流效率为9.09cd/A;当电压为14V时,器件的最大亮度为16 370cd/m2。不加CdS时,当电压为8V时,器件的最大效率为5.16cd/A;当电压为14V时,最大亮度为6 669cd/m2。加CdS的器件比不加CdS的器件最大效率提高了1.76倍,最大亮度提高了2.42倍。 相似文献
4.
在空穴传输层(HTL)和发光层(EML)间插入4,4-N,N′-二咔唑基联苯(CBP)超薄层,制备了结构为ITO/NPB/CBP(xnm)/CBP:Ir(ppy)3/BCP/Alq3/LiF/Al有机电致磷光器件。与未插入CBP超薄层的器件相比,CBP超薄层的引入可以有效阻挡Ir(ppy)3的三线态能量通过Dexter能量转移到HTL的NPB中,减少无辐射能量损失,提高了器件发光效率。调整CBP薄层的厚度,当x为3nm时,器件的效率提高幅度最大,从x为0nm时的9.0cd/A提高到16.9cd/A。 相似文献
5.
研究了基于FIrpic的超薄非掺杂有机电致蓝色磷光器件的光电特性.改变超薄非掺杂FIrpic发光层以及其隔离层的厚度,可以调控FIrpic分子的聚集及激子相互作用强度对器件性能的影响.研究结果表明,具有TCTA 5 nm/FIrpic 1 nm/TCTA 5 nm/FIrpic 1 nm/TPBI 5 nm/FIrpic 1 nm多发光层结构的器件性能较优,最大发光效率为9.9 cd/A,超薄非掺杂发光层结构避免了掺杂方法中共沉积磷光材料浓度的精确控制,有利于简化器件制备工艺. 相似文献
6.
制备了以铱配合物(btp)2Ir(acac)磷光体为掺杂剂,分别以TPBi、 CBP 和Alq为发光层基质的红色电致磷光器件,比较了三种器件的性能.结果表明,在三种器件中,以Alq为基质的器件效率极低;以CBP为基质的器件,高的效率和好的色度相互矛盾;以TPBi为基质的器件性能最好,在驱动电流为4 mA/cm2时,色坐标为(x=0.62,y=0.35),亮度效率达2.43 cd /A.分析表明, (btp)2Ir(acac)分子在TPBi基质中的高效发光源于其对空穴的有效俘获.进一步的研究确定,(btp)2Ir(acac)分子在TPBi基质中的激子扩散长度为20 nm左右. 相似文献
7.
8.
以CBP作为母体材料,绿色磷光染料Ir(ppy)3作为敏化剂,以荧光染料rubrene作为受主,制备了结构为ITO/2T-NATA(25 nm)/ NPBX (25-d nm)/ CBP:5%Ir(ppy)3:0.5%Rubrene(8 nm)/NPBX(d nm)/DPVBi(30 nm)/TPBi(20 nm)/Alq(10 nm)/LiF(1 nm)/Al的白光器件.在器件中,敏化剂Ir(ppy)3、荧光染料rubrene的浓度分别为5.0 wt%和0.5 wt%,发光层的厚度选择8 nm,通过调整两层NPBX的厚度来改善器件的性能,得到了比较理想的白光发射.当d的厚度为10 nm 时,器件在7 V的电压下最大电流效率达到11.2 cd/A,在17 V的电压下其最大亮度达到28 170 cd/m2,色坐标为(0.37,0.42),处于白光区. 相似文献
9.
利用9,10-bis(2-naphthyl) anthracene(AND)掺杂rubrene作为器件单一发光层,研制成功单层白光器件。器件在电流密度为140mA/cm2时,电流效率达到5.93cd/A;当电压为21V时,该器件达到最高亮度9300cd/m2。器件发光色坐标为(0.32,0.40),且随着电压的变化发光色度始终处于白光区。这种器件的白色发射是来源于AND(蓝色发射)和rubrene(橙色发散)的混合发射。与此同时,AND和rubrene二者之间会发生Frster能量传递。 相似文献
10.
基于红绿/蓝双发光层,制作了结构为ITO/MoO 3(10nm)/NPB(40nm)/TCTA(10nm)/CBP:R-4B(2%):GIR1(14%,X nm)/mCP:Firpic(8%,Y nm/BCP(10nm)/Alq3(40nm)/LiF(1nm)/Al( 100nm)的白色全磷光有机电致发光器件(OLED),通过 调节红绿发光层的厚度X与蓝光发光层的厚度Y,研究了不同发光层厚度器件发 光性能的影响。研究发现:当X 为23nm、Y为7nm时,器件的光效和色坐标都具有 很高的稳定性,在电压分别为5、 10和15V时,色坐标分别为(0.33,0.37)、(0.33,0. 37)和(0.34,0.38);在电压为 5V时,电流密度为0.674mA,亮度为158.7cd ,最大电流效率为26.87cd/A;利用电子阻 挡材料TCTA和空穴阻挡材料BCP能够显著提高载流子的复合效率。分析认为:发光层顺序 为红绿/蓝时,更有利于蓝光的出射,从而使白光的色坐标更稳定。 相似文献
11.
采用双发光层制作白色有机电致发光器件的工艺研究 总被引:4,自引:1,他引:4
利用白色OLED是一种实现全彩色显示的方法,因为白光加滤色膜的方式可以获得红、绿、蓝三基色。文章采用双发光层方法,即TBPe掺杂到ADN中作为蓝色发光层,DCJTB掺杂到Alq3中作为红色发光层,从而实现白光显示,器件结构为:ITO/CuPc/NPB/ADN∶TBPE(15nm)/Alq3∶DCJTB(15nm)/Alq3(35nm)/LiF/Al。文章主要研究了发光层厚度和掺杂材料浓度的变化对白色OLED器件发光性能的影响,最终确定了发光层厚度和掺杂剂浓度,当蓝色发光层厚度15nm,红色发光层厚度15nm,TBPe的掺杂浓度(质量分数)为2.8%,DCJTB的掺杂浓度为1.5%时,可以获得最佳的白色器件。与三元共蒸单发光层结构不同,该方法工艺简单,操作过程容易控制,实验重现性高,色纯度好。 相似文献
12.
两种不同结构及掺杂的白色有机发光二极管 总被引:2,自引:3,他引:2
白色有机发光器件由于在其上加彩色滤光片可容易地达到全彩效果而备受关注,本文通过两种不同结构及掺杂的器件,实现了白色有机电致发光,一种为具有空穴锁定层并在其中掺杂的器件;另一种为蓝色染料和红色染料分别加在发光层与电子传输层中的普通3层结构器件。结构分别为ITO/NPB/TPBi;Rubrene/Alq/Mg;Ag和ITO/NPB/DPVBi;Perylene/Alq :DC JTB/Mg:Ag。具有空穴锁定层的器件和普通型器件的最大亮度、最大流明效率、色度分别为8635cd/m^2、0.851m/W、(x=0.31,y=0.32)10倍,空穴锁定层的器件寿命远小于普通型的。此文对此差异进行了分析。 相似文献
13.
采用真空热蒸镀技术,制备了结构为ITO/NPBX(40nm)/rubrene(0.2 nm)/NPBX(5nm)/DPVBi(30nm)/TPBi:x%Ir(ppy)3(30nm)/LiF/Al的白光器件。利用Ir(ppy)3掺杂到电子传输层TPBi中,在掺杂层中提高了电子的迁移率,调整了空穴和电子的平衡,从而改善了白色有机电致发光器件的效率。当Ir(ppy)3的掺杂浓度为6%时,器件的电流效率最高,在驱动电压9 V时最大电流效率为10.66 cd/A,此时色坐标为(0.36,0.38);当电子传输层TPBi中不掺杂Ir(ppy)3时,白光器件的效率最低,在驱动电压10V时最大电流效率为1.69 cd/A,此时色坐标为(0.31,0.30)。掺杂浓度为6%的白光器件的电流效率是不掺杂白光器件的电流效率的6.3倍。 相似文献
14.
有机电致发光技术被认为是可能替代液晶的新一代显示技术,白光有机发光器件由于可应用于液晶显示的背光源、普通照明、特殊光源以及实现全彩色有机发光显示而倍受瞩目。本文对白光有机电致发光器件的结构、工作原理等进行了简单的概述并总结了白光有机发光器件的最新进展。 相似文献
15.
基于rubrene掺杂剂的高亮度白色有机电致发光器件 总被引:1,自引:2,他引:1
采用CBP主体材料中掺杂rubrene,制备了结构为ITO/2T-NATA(25 nm)/NPBX(20 nm)/CBP: 1%rubrene(10 nm)/NPBX(5 nm)/DPVBi(30 nm)/TPBi(20 nm)/Alq(10 nm)/LiF(1 nm)/Al的白光器件,此结构将器件的发光区控制在了DPVBi层和rubrene掺杂层.利用rubrene染料本身的载流子俘获空穴特性与CBP母体转移来的能量发射荧光特性,以及插入的5 nm NPBX的电子阻挡特性获得了高亮度的白光器件.此器件在驱动电压为16 V时最大亮度达到25 110 cd/m2,对应的色坐标为(0.30,0.34),在驱动电压为10 V时最大电流效率为5.32 cd/A,外量子效率为1.65%.而且,驱动电压在10~16 V时,即达到最大亮度和最大效率时,其色坐标都在白光等能点(0.33,0.33)附近. 相似文献
16.
采用蓝色磷光染料bis[(4,6-diflourophenyl)-pyridinato-N,C2’)](picolinato) Iridium (III)(FI rpic)和黄色磷光染料bis[2-(4-tertbutylphenyl) benzothiazolato-N,C2,]iridium(acetylacetonate)[(t-bt)2 Ir(acac)]为超薄层,制备了结构为ITO/NPB/mCP/(t-bt)2Ir (acac)/mCP/Flrpic/mCP/TPBi/Mg:Ag的白色有机电致发光器件.通过调节磷光染料双超薄层Flrpic和(t-bt)2Ir(acac)的厚度,优化了白光器件的性能.结果表明,白光器件的最高电流效率为13.08 cd/A,最高功率效率为7.21 lm/W,发光光谱稳定,在9V时得到色坐标为(0.33,o.33)的标准白光,并且在较宽的电压范围内仅有(±0.08,±0.08)变化.这是由于超薄层FIrpic和(t-bt)2Ir(acac)形成的陷阱效应直接俘获电子和空穴,从而将载流子复合区域限制在一定范围内,不仅有利于增加激子的辐射发光效率,且提高了光谱的稳定性. 相似文献
17.
采用C60/pentanece作为非掺杂电荷产生层,并在其两边各插入Al和MoOs薄层作为C60和pentanece的电子注入层和空穴注入层,在此基础上制备了结构为ITO/NPB/mCP∶8wt%Ir (ppy) 3/TPBi/Al/C60/pentanece/MoOs/NPB/mCP∶8wt%Ir (ppy) 3/TPBi/Cs2CO3/Al的双发光单元叠层绿色磷光有机发光器件(OLED).实验表明,增加Al和MoO3电荷注入层,可有效改善有机电荷产生层的电荷注入能力,提高叠层OLED器件的发光亮度和电流效率.叠层器件的启亮电压明显低于单个器件的1/2,但电流效率是单层器件的两倍以上.当Al/C60/pentanece/MoO3的厚度分别是3、15、25和1 nm时,叠层OLED器件具有最佳的光电性能,其最大亮度和最大电流效率分别是7 920.0 cd/m2和16.4 cd/A. 相似文献