首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
铝硅过共晶合金凝固过程中析出的初生硅颗粒被视为铝熔体中的夹杂物颗粒。研究了由交替旋转磁场和下行波磁场组成的交替复合磁场对铝熔体中夹杂物的去除效果。结果表明,在交替复合磁场作用下,夹杂物颗粒发生了明显的聚合并迁移至顶部被除去。对比发现,交替复合磁场的除杂效果要优于单向旋转磁场和下行波磁场组成的单向复合磁场。随着交替复合磁场中的交替旋转磁场的频率和电流的增加,磁场除杂效果显著上升。交替时间为10 s时磁场除杂效果最佳。  相似文献   

2.
Abstract

A new electromagnetic stirring approach using a combination of rotating (RMF) and travelling magnetic fields (TMF) is proposed, where both fields are applied subsequently in form of rectangular pulses. The strategy to utilise time-modulated RMF and TMF is aimed at overcoming the known deficiencies of conventional stirring, in particular flow-induced macrosegregation. This paper considers the directional solidification of Al–Si alloys from a water cooled copper chill. The results demonstrate that melt agitation using modulated magnetic field offers a considerable potential for a well aimed modification of casting properties by an effective control of the flow field, but, this goal requires a well considered optimisation of the magnetic field parameters.  相似文献   

3.
介绍了磁场分类及其在材料凝固技术中的应用研究现状。磁场可分为稳态磁场和非稳态磁场,其中稳态磁场又可分为尖角磁场(CMF)、垂直磁场(VMF)、水平磁场(HMF);非稳态磁场可分为旋转磁场(RMF)、行波磁场(TMF)、脉动、脉冲、交变磁场(AMF、PMF)和复合电场磁场(EMF),同时具体阐述了每种磁场的机理及其在材料凝固技术中的应用情况。最后对未来的电磁凝固技术进行了展望。  相似文献   

4.
1 INTRODUCTIONGenerallytherefinedmetalscontainalargeamountofnon metallicinclusionsthatcomefromtherawmaterialsorarisefromeverystepofthemetal makingprocesses[1] .Thesizeoftheinclusionisusu allysmall,andsometimesitsdensityisclosetothatoftheliquidmetal.Anewte…  相似文献   

5.
From the viewpoint of energy reduction, the recovery of metal scrap and its recycling have been rising as an important global subject. However, it is difficult to remove deleterious impurities, which have detrimental effects on the mechanical properties. In particular, it is difficult to eliminate nonmetallic inclusions such as alumina(Al2O3) in aluminum alloys when they are subject to recycling. In this study, an experiment on the elimination of the impurities in the melt by imposing electromagnetic force to molten aluminum was conducted. The principle behind these electromagnetic methods is that as the electromagnetic force induced in metal scarcely acts on non-metallic inclusions due to low electric conductivity, the non-metallic inclusions are moved to the direction opposite the electromagnetic force and can be separated from the melt. The prediction based on the theoretical analyses was confirmed through the visualization of the polystyrene particle motion in an NaCl aqueous solution. We also proposed optimum electromagnetic conditions such as current density, magnetic field intensity and particle size for eliminating the inclusion particles continuously found through numerical analysis and experiments.  相似文献   

6.
流动控制结晶器内磁场和吹氩对夹杂物粒子群运动的影响   总被引:1,自引:0,他引:1  
利用数学模型求解包含电磁力项的Navier-Stokes方程得到流场的速度分布,以流场为基础,建立夹杂物粒子群运动的计算模型,利用水模型实验检验单一球体运动轨迹的计算结果。没有磁场作用时,所有粒子分两组分别进入上下回旋区作螺旋线运动,部分粒子在回流区内作螺旋线运动后又进入水口射流区,然后再进入反向回流区,处于上部回流区的夹杂物具有去除的可能性,吹入氩气能增加夹杂物粒子进入上部回流区的机会,从而提高夹杂物粒子的去除率,施加磁场后,夹杂物粒子的螺旋运动消失,同时粒子的运动速度明显降低,吹入氩气和施加磁场两者均能有效地控制夹杂物粒子群的运动。  相似文献   

7.
The design of equipment for generating the transverse magnetic field in arc welding can be optimised by modelling the direct magnetic field produced by the device for generating (GD) the transverse magnetic field (TMF) by the electric field of the current flowing in flat models made of electrically conducting materials. The lines of force of the electric field in the flow of the current in the modelling medium correspond to the lines of force (induction lines) of the magnetic field generated by GD TMF. Using these modelling methods, it is shown that to obtain the maximum values of the transverse component of the induction of the magnetic field in the zone of the welding arc of the electrode droplet and liquid metal of the weld pool, the optimum design of GD TMF is the one in which the angle of inclination of the bars to the vertical is equal to 45° and the end surfaces have chamfers parallel to the plane of the welded sheets.  相似文献   

8.
1 Introduction The application of the electromagnetic body force to separate non-metallic inclusions was proposed by ALEMANY et al[1,2]. And ASAI et al have measured the migration velocity of polystyrene particles in a sodium chloride aqueous solution, in which a DC electric field and DC magnetic field were simultaneously imposed. They found that the direction of migration is opposite to the electromagnetic force and the migration velocity agrees well with the values calculated from the …  相似文献   

9.
Effect of electromagnetic force on melt induced by traveling magnetic field   总被引:1,自引:0,他引:1  
A new apparatus was designed to measure the electromagnetic force and a computational study of the traveling magnetic field(TMF)and its application to the Ga-In-Sn melt(with low melting point),then the forces on Al,Mg,and Li melt,were simulated. The result show that the electromagnetic force on the melt increases linearly with the increasing length of the melt in the TMF.The TMF-induced Lorentz force increases with increasing frequency,and then decreases.The maximum value is obtained when the current frequency is 160 Hz,over that frequency the force decreases rapidly.When the iron-core is activated,the force increases when the melt closes to the iron-core.The Lorentz forces have inversely-proportional relationships with the electrical resistivity,the dfx/dρdecreases and the dfy/dρincreases with the increasing electrical resistivity(df/dρis the slope of the Lorentz force profile).  相似文献   

10.
从电磁场的基本原理出发,利用ANSYS有限元软件建立铝硅合金半固态电磁铸造的磁流耦合场模型,通过数值模拟计算磁场对流场和温度场的影响。结果表明,电磁场频率直接决定流场及温度场的分布,高频电磁场感应加热效果明显、洛伦兹力主要表现为电磁压力,有利于电磁铸造约束成型。  相似文献   

11.

The effects of two types of magnetic fields, namely harmonic magnetic field (HMF) and pulse magnetic field (PMF) on magnetic flux density, Lorentz force, temperature field, and microstructure of high purity Cu were studied by numerical simulation and experiment during electromagnetic direct chill casting. The magnetic field is induced by a magnetic generation system including an electromagnetic control system and a cylindrical crystallizer of 300 mm in diameter equipped with excitation coils. A comprehensive mathematical model for high purity Cu electromagnetic casting was established in finite element method. The distributions of magnetic flux density and Lorentz force generated by the two magnetic fields were acquired by simulation and experimental measurement. The microstructure of billets produced by HMF and PMF casting was compared. Results show that the magnetic flux density and penetrability of PMF are significantly higher than those of HMF, due to its faster variation in transient current and higher peak value of magnetic flux density. In addition, PMF drives a stronger Lorentz force and deeper penetration depth than HMF does, because HMF creates higher eddy current and reverse electromagnetic field which weakens the original electromagnetic field. The microstructure of a billet by HMF is composed of columnar structure regions and central fine grain regions. By contrast, the billet by PMF has a uniform microstructure which is characterized by ultra-refined and uniform grains because PMF drives a strong dual convection, which increases the uniformity of the temperature field, enhances the impact of the liquid flow on the edge of the liquid pool and reduces the curvature radius of liquid pool. Eventually, PMF shows a good prospect for industrialization.

  相似文献   

12.
Electromagnetic confinement and shaping (EMCS) is an advanced materials processing technique. In this paper, a novel dual-frequency EMCS was proposed, i.e. lower frequency magnetic field (20 kHz) was used to produce the electromagnetic force, and higher frequency magnetic field (50 kHz) to heat and melt metal materials without effect on the electromagnetic force. Shaping inductors and heating inductors were designed according to the experimental results and our previous works, and distance between them was experimentally determined. Stability of dual-frequency EMCS of melt was detailedly analyzed. At last, several stainless steel samples were produced by the new method, and results show that it can easily achieve good coupling of temperature field and electromagnetic force by separately designing and controlling the two magnetic fields.  相似文献   

13.
To further improve the metallurgical quality of electroslag remelting,remove the large inclusions in electroslag ingot and refine the solidification structure of electroslag ingot,an electroslag remelting furnace with electromagnetic stirring was designed,and the influence of different magnetic induction intensities on metallurgical quality of GCr15 electroslag ingot was studied.Inclusions with different sizes and types were analyzed by an ASPEX scanning electron microscope,and the morphology and composition of inclusions were further observed by a JSM-6510LV scanning electron microscope.The distribution of alloying elements on the cross section of electroslag ingot was analyzed by original position analysis(OPA).The results show that whether or not electromagnetic stirring is used,the inclusions in electroslag ingot are mainly composed of Al2O3,MnS,MnS-oxide and other oxides,among which Al2O3 is the most.Compared with an electroslag ingot without electromagnetic stirring,the number of inclusions decreases considerably,and the proportion of small inclusions increases while the proportion of large inclusions decreases when the electromagnetic stirring with remelting current of 1.1 kA and magnetic induction intensity of 62 Gs is applied.However,excessive electromagnetic force will cause the number and diameter of inclusions to increase again.Electromagnetic stirring has different effects on the segregation of different elements.Under the experimental conditions,the weak electromagnetic force with 1.1 kA and magnetic induction intensity of 108 Gs has little effect on the segregation of C,but decreases the segregation of P,and the excessive electromagnetic force aggravates the segregation of alloy elements.  相似文献   

14.
以镁合金焊接熔池为研究对象,建立了移动热源作用下焊接熔池的三维数学模型. 利用大型通用有限元软件ANSYS将电磁场分析结果导入到热流场分析中,实现电磁场和热流场之间的耦合分析. 模拟了无外加磁场作用下以及外加磁场作用下镁合金焊接熔池的温度场分布和流体流动的速度矢量分布. 结果表明,外加磁场产生的电磁力驱动熔池中熔融的液态金属发生旋转运动,改变了液态金属原有的运动方式和传热方式,流体流动速度和流动范围增加,焊缝熔宽增大,熔深减小. 试验结果验证了模拟结果的可靠性.  相似文献   

15.
Metallurgical effect of electromagnetic brake (EMBR) could be influenced by many factors. A three-dimensional finite-volume mathematical model of region electromagnetic brake process has been built based on the theory of computational fluid dynamics (CFD) and magneto-hydrodynamics (MHD). Three-dimensional numerical simulation is studied by using the commercial software. The results from numerical simulation show that flow field in the mold can be effectively controlled by electromagnetic brake; electromagnetic force is the motive power of braking, the effects of EMBR is associated directly with the intensity magnitude of magnetic field, the reciprocal position between magnetic field and acting region and casting speed, etc.  相似文献   

16.
Distributions of electromagnetic fields and induced forced flow inside a metal melt are crucial to understand the grain refinement of the metal driven by pulsed magneto-oscillation (PMO). In the present study, PMO-induced electromagnetic fields and forced flow in Ga-20wt%In-12wt%Sn liquid metal have been systematically investigated by performing numerical simulations and corresponding experimental measurements. The numerical simulations have been confirmed by magnetic and melt flow measurements. According to the simulated distribution of electromagnetic fields under the application of PMO, the strongest magnetic field, electric eddy current and Lorentz force with inward radial direction inside the melt are concentrated adjacent the sidewall of cylindrical melt at the cross section of middle height of coil. As a result, a global forced flow throughout the whole cylindrical column filled with Ga-20wt%In-12wt%Sn melt is initiated with a flow structure of two pair of symmetric vortex ring. The PMO-induced electromagnetic fields and forced flow in Al-7wt%Si melt have been numerically simulated. The contribution of electromagnetic fields and forced flow to the grain refinement of Al-7wt%Si alloy under the application of PMO is discussed. It indicates that the forced flow may play a key role in the grain size reduction.  相似文献   

17.
The effect of the pulsed magnetic field on the grain refinement of superalloy K4169 has been studied in directional solidification. In the presence of the solid-liquid interface condition, the distributions of the electromagnetic force, flow field, temperature field, and Joule heat in front of the solid-liquid interface in directional solidification with the pulsed magnetic field are simulated. The calculation results show that the largest electromagnetic force in the melt appears near the solid-liquid interface, and the electromagnetic force is distributed in a gradient. There are intensive electromagnetic vibrations in front of the solid-liquid interface. The forced melt convection is mainly concentrated in front of the solid-liquid interface, accompanied by a larger flow velocity. The simulation results indicate that the grain refinement is attributed to that the electromagnetic vibration and forced convection increase the nucleation rate and the probability of dendrite fragments survival, for making dendrite easily fragmented, homogenizing the melt temperature, and increasing the undercooling in front of the solid-liquid interface.  相似文献   

18.
利用旋转磁场控制Mg15Al二元高铝镁合金凝固过程,以期获得均匀细小的等轴晶,使合金后续的等通道挤压能顺利进行.通过OM、SEM、EDS测试手段研究了旋转磁场对合金凝固组织及溶质分配的影响.结果表明:旋转磁场主要通过与金属液流相互作用引起强烈的旋流而产生搅拌作用来影响合金的温度场与溶质场的分布,故能够显著细化Mg15Al二元高铝镁合金组织中的初晶a-Mg,促进Al在初晶a-Mg中的固溶,但对于在凝固末期才形成的共晶组织而言,由于凝固末期所剩液相形不成有效流动,其形态受旋转磁场影响不大.随励磁电压增大,晶粒细化效果增加,励磁电压为60 V时,晶粒细化效果最佳,A1在初晶a-Mg中固溶量最高,励磁电压继续增加,由于磁场感生热增加将弱化二次冷却,使晶粒细化效果下降.  相似文献   

19.
A two-phase numerical model coupled with heat transfer was presented to describe the radial distribution of SiC particles on centrifugally-cast metal matrix composite,and a transverse static magnetic field was concurrently imposed to induce electromagnetic stirring of the melt as it revolved with the mold.Meanwhile,experimental observations were also carried out to examine the radial distribution of SiC particles in pure aluminum.The effects of the imposed magnetic field,particle size and the matrix metals were discussed.The computational results show that the particles tend to be congregated by the centrifugal force,and both increasing the imposed magnetic field and decreasing the particle size tend to result in even distribution of the particles.With the magnetic field varying from 0 to 1 T and the particle size from 550 to 180 μm,a uniform distribution of the particles in the aluminum matrix can be obtained among the computational results.The matrix metal can also influence the particle distributions due to the difference in physical properties of metals.Experimental observation shows similar tendency of particle distributions in aluminum matrix influenced by magnetic field and particle size.However,the chilling effect from the mold wall results in an outer particle-free zone,which is not involved in the numerical model.  相似文献   

20.
电磁制动对结晶器内钢液流动具有显著影响,为明确电磁力对高拉速薄板坯结晶器内流场分布的影响规律,建立了薄板坯电磁连铸结晶器内钢液流动的三维数学模型,利用数值计算方法研究磁场与流场耦合对钢液的流动影响。模拟结果表明,五段式电磁制动技术产生的恒稳磁场可以显著抑制钢液湍流流动,降低弯月面波动,且具有稳定钢渣界面的作用;通过研究高拉速与制动力的产生关系,揭示了由线圈产生的磁感应强度与不同拉速的匹配程度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号