首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
采用聚3-己基噻吩(P3HT)与富勒烯衍生物(PCBM)混合制备复合光伏器件,器件结构为ITO/PEDOT∶PSS/P3HT∶PCBM/Al。通过PCBM不同掺杂浓度的掺杂体系光伏特性的研究发现,P3HT∶PCBM质量比为1∶4时,器件显示出较好的光伏特性,开路电压为0.69 V,在光强为90 mW/cm2的白光(光源为氙灯)激发下,器件的短路电流密度为6.73 mA/cm2,填充因子为0.33,能量转换效率达到1.7%。  相似文献   

2.
利用溶剂热法可控制备了具有不同质量比的还原氧化石墨烯/CuInS_(2)量子点(rGO/CuInS_(2)-QDs)杂化材料。将rGO/CuInS_(2)-QDs杂化材料与聚(2-甲氧基-5-(2-乙基己氧基)-1,4-苯撑乙烯基)(MEH-PPV)共混作为光活性层,制备了石墨烯基杂化聚合物太阳能电池,研究了rGO/CuInS_(2)-QDs杂化受体材料中rGO与CuInS_(2)-QDs的质量比(x)以及聚合物给体材料MEH-PPV与rGO/CuInS_(2)-QDs杂化受体材料的质量比(w)对器件性能的影响。结果表明,光活性层复合膜中rGO/CuInS_(2)(x=0.25)杂化受体材料含量由10%(w=9)增加到17%(w=5)时,器件的电子收集效率(ηc)由0.61提高到0.78,使得器件的光电转换效率得到提高。  相似文献   

3.
将广泛用于光伏器件的有机材料二胺(NPB)应用到光电器件中,是一种新的提升器件性能的思路。基于NPB材料的空穴传输特性,以3-己基噻吩的聚合物(P3HT)和富勒烯衍生物(PCBM)作为活性层,制备了不同阳极修饰层的太阳电池,研究了NPB修饰层对器件性能的影响。通过光照和黑暗条件下电学特性的比较以及拟合计算,分析了NPB修饰层对性能影响的内在原因,并对其厚度做了优化。结果表明:NPB厚度为5 nm时,器件的短路电流、开路电压和填充因子都有所提高。NPB修饰层可以改善界面接触,提高空穴的收集效率。  相似文献   

4.
新型含硒杂环红光聚芴电解质的电致发光器件制备和研究   总被引:5,自引:5,他引:0  
罗潺  黄飞  杨伟  彭俊彪  曹镛 《液晶与显示》2006,21(2):134-138
利用新型的聚[9,9-二辛基芴-9,9-(双(3′-(N,N-二甲基)-N-乙基铵 溴-)丙基)芴-4,7-二噻吩-2-基-2,1,3-苯并硒二唑](PFNBr-DBSe)共扼聚电解质制备了聚合物发光二极管。这类共扼聚电解质可用乙醇等溶剂成膜,不仅可代替传统的甲苯等芳香性非极性溶剂,而且有利于制备溶液型的多层显示器件。文章研究了这类新型聚电解质的光致发光特性及发光二极管器件的电荧光特性。研究表明在紫外光照射或电激发下,窄带系的DBSe链段通过俘获激子能够实现有效的能量转移。聚电解质中DBSe的含量在5%以上,其器件具有电致发光峰值为700~740nm的饱和红光发射。所制聚电解质器件在用铝作电极时的电致发光效率比用钡作电极时要高。  相似文献   

5.
两步沉积法中胺盐的传统溶剂异丙醇会对锡基钙钛矿产生严重破坏,因此探索其他溶剂制备锡基钙钛矿非常重要。利用4-甲基-2-戊醇取代异丙醇充当胺盐的溶剂,并在胺盐中添加苯乙基溴化胺(PEABr),通过两步沉积法制备了锡基钙钛矿薄膜及全溶液工艺太阳能电池。实验结果表明,相比于异丙醇,使用4-甲基-2-戊醇作为胺盐溶剂,可降低对锡基钙钛矿的破坏作用,促进锡基钙钛矿结晶成膜,原因可能是该溶剂分子的烷基部分可以增加对羟基的空间位阻。但未添加PEABr时,制备的FASnI3薄膜存在许多针孔,器件光电转换效率(PCE)仅为0.24%;在添加摩尔占比为0.3 (n (PEABr)/n (FAI+PEABr)=0.3)的PEABr时,制备的锡基钙钛矿薄膜针孔减少,致密度提高,表面形貌得到改善。利用全溶液工艺制备的基于该薄膜的太阳能电池PCE达到4.15%。该研究有助于促进两步沉积法制备锡基钙钛矿薄膜及其光伏器件的进一步发展。  相似文献   

6.
基于场效应晶体管(FET)结构的光电探测器能通过栅压抑制噪声信号并具有光电信号放大的功能。有机半导体材料已经被广泛应用到光敏晶体管中,全有机探测器对于实现大面积器件制备、降低成本及柔性器件具有十分重大的意义。然而,多层有机聚合物的成膜,必须避免在溶液制备过程中的溶剂腐蚀问题。实验中,采用顶栅底接触(TGBC)FET结构及正交溶剂(orthogonal solvent)的方法,以乙酸丁酯作为聚(甲基丙烯酸甲酯)(PMMA)的溶剂,避免对聚(3-己基噻吩)(P3HT)有源层的破坏,成功制备了性能优良的全有机光电探测器Au(源漏极)/P3HT(150 nm)/PMMA(800 nm)/Al(栅极),其开/关电流比达到103,迁移率达810-3 cm2V-1s-1。该器件对350~650 nm的光照均有响应,在0.1 mW/cm2光照下其明/暗电流比达75。在600 nm光照下,其最大响应度达到0.28 A/W,其响应度变化趋势与P3HT的吸收光谱情况相似。  相似文献   

7.
用CzHQZn作为受主,利用磷光敏化的方法制备了有机电致黄光和白光器件。黄光器件采用Ir(ppy)3掺杂4,4-N,N′-=咔唑基联苯(CBP),敏化新的黄光材料CzHQZn作为发光层,当发光层厚度为18nm时器件性能最好,最大发光效率为3.26cd/A(at10V),最大发光亮度为17560cd/m2(at10V);白光器件采用多发光层结构,结合ADN的蓝光复合发光,同时加入了电子阻挡层(NPBX)和空穴阻挡层(BCP),获得的白光器件最大发光效率为2.94cd/A(at8V),最大亮度为11089cd/m2(at13V)。  相似文献   

8.
采用真空热蒸镀技术,制备了结构为ITO/NPBX(40nm)/rubrene(0.2 nm)/NPBX(5nm)/DPVBi(30nm)/TPBi:x%Ir(ppy)3(30nm)/LiF/Al的白光器件。利用Ir(ppy)3掺杂到电子传输层TPBi中,在掺杂层中提高了电子的迁移率,调整了空穴和电子的平衡,从而改善了白色有机电致发光器件的效率。当Ir(ppy)3的掺杂浓度为6%时,器件的电流效率最高,在驱动电压9 V时最大电流效率为10.66 cd/A,此时色坐标为(0.36,0.38);当电子传输层TPBi中不掺杂Ir(ppy)3时,白光器件的效率最低,在驱动电压10V时最大电流效率为1.69 cd/A,此时色坐标为(0.31,0.30)。掺杂浓度为6%的白光器件的电流效率是不掺杂白光器件的电流效率的6.3倍。  相似文献   

9.
碳电极具有成本低、印刷方便、可有效隔离水氧等优点,因此有望利用碳电极材料实现低成本、高稳定性的钙钛矿太阳电池。无空穴传输层的传统碳基钙钛矿太阳电池面临着空穴提取率低、电子逆向传输,钙钛矿和碳电极界面的载流子复合等问题。文章引入聚(3-己基噻吩)(P3HT)作为器件的空穴传输层,使碳基钙钛矿太阳电池ITO/SnO2/MAPbI3/P3HT/Carbon的光伏性能得到了显著改善:器件的光电转化效率从11.16% 提高到13.37%。在氮气环境下,连续光照1000h,太阳电池的光电转化效率可保持初始值的87%,而传统器件在光照500h后,其光电转化效率已下降至初始值的60%。  相似文献   

10.
以醇溶性钛螯合物为阴极修饰层的高效聚合物太阳能电池   总被引:1,自引:1,他引:0  
以醇溶性的钛螯合物乙酰丙酮氧钛(TOPD)为电子收集层,聚3-己基噻吩(P3HT)为电子给体,富勒烯衍生物(PC60BM或PC70BM)为电子受体,制备了高效本体异质结聚合物太阳电池。TOPD膜是通过旋涂TOPD异丙醇溶液,然后在空气中经60℃热退火15min得到。通过优化TOPD层厚度及器件制备工艺,显著提高了聚合物太阳能电池的短路电流。通过引入TOPD电子收集层,使基于P3HT:PC60BM活性层的太阳能电池在AM1.5G、100mW·cm-2的光照条件下光-电转换效率(PCE)由2.72%提高到3.65%。用PC70BM代替PC60BM,可以使电池的PCE进一步提高到3.96%。PCE的提升主要归结于TOPD的层的引入可以提高电子传输速率并且可以降低电池的串联电阻。除此之外,TOPD替代常用的低功率金属Ca作为阴极修饰材料,可以有效提高聚合物质太阳能电池器件的工作稳定性。  相似文献   

11.
研究了新型光电聚合物材料聚1,4二(1-氰基)乙烯基撑苯撑3,7-N-辛基吩噻嗪撑(PQP)的电学性能和光伏特性.首先制备了结构为ITO/PQP/Al的单层器件.在暗场条件下,器件的电流一电压特性曲线呈典型的二极管整流特征.在白光二极管照射下器件可以获得光伏响应,开路电压(Voc)为0.2 V,填充因子(ff)为0.27.此外,在单层器件的基础上,研究了与茈的衍生物PTCDI-C13结合制备的双层结构器件ITO/PQP/PTC-DI-C13/Al的光伏性能.与单层器件相比,双层器件的Voc可提高到0.9 V.双层器件的开路电压显著增加表明开路电压不仅仅受电极功函数的影响,还与受主的LUMO和施主的HOMO之间的能带有关.  相似文献   

12.
以聚3己基噻吩(P3HT)和[6,6]-phenyl-C61-butyric acid methyl ester(PCBM)为活性层材料制成聚合物太阳电池,通过控制活性层旋涂速率控制活性层厚度。从不同活性层厚度器件的吸收光谱、原子力及器件各项性能参数详细分析了不同活性层旋涂速率对太阳电池性能的影响。结果表明:旋涂速率为1 000 r/min时,电池具有最佳性能,光电转换效率最高为1.54%。  相似文献   

13.
阳秀  黎威志  钟志有  蒋亚东 《半导体光电》2006,27(2):161-163,209
采用聚乙烯基咔唑(PVK)作为空穴传输层,8-羟基喹啉铝(Alq3)作为发光层,制备了结构为ITO/PVK/Alq3/Mg∶Ag/Al的有机发光二极管(OLED),通过测试器件的电流-电压-发光亮度特性,研究了空穴传输层厚度对OLED器件性能的影响,优化了器件功能层的厚度匹配.实验结果表明,OLED的光电性能与空穴传输层的厚度密切相关,空穴传输层厚度为15nm时,OLED器件具有最低的启亮电压,最高的发光亮度和最大的发光效率.  相似文献   

14.
为了探究聚合物结构与性能的关系,获得电子传输型半导体材料。采用Stille交叉偶联反应,制备了基于噻吩-氰基乙烯-噻吩(TCNT)和2-氧吲哚-3-亚基-二氢吡咯吲哚-二酮(BDID)结构的一种新型的低能带隙给体-受体共轭聚合物PBDID-TCNT。采用热重分析仪、示差扫描量热仪、紫外-可见-近红外分光光度计、电化学工作站与原子力显微镜等测试手段对聚合物的热性能、光学性能、电化学性能以及微观结构进行了表征。结果表明:聚合物PBDID-TCNT具有优异的热稳定性,宽的吸收光谱,低的最低未占轨道/最高占有轨道能级(LUMO/HOMO)。首次制得了PBDID-TCNT型的聚合物,以聚合物为半导体层的有机薄膜晶体管器件展现出电子传输特性,电子迁移率达到0.11cm~2/(V·s),同时开关比超过10~5。  相似文献   

15.
杨惠山  黄淑华 《半导体光电》2013,34(3):370-373,387
采用蓝色荧光材料1p-TDPVBi结合绿色磷光材料2Ir(ppy)3掺杂到母体材料CBP作为绿光发光层,并且采用3BPhen作为电子传输层和激子阻挡层制备结构为ITO/m-MTDATA(50nm)/NPB(10nm)/p-TDPVBi(dnm)/CBP∶Ir(ppy)38%7nm/BPhen(60nm)/LiF(1nm)/Al的有机发光器件。实验结果表明:通过改变蓝光发光层p-TDPVBi的厚度,得到了高效率的有机发光器件,当p-TDPVBi厚度为5nm时,器件的电流效率和功率效率在4V时达到32.3cd/A和25.3lm/W,亮度在11V时达到31 020cd/m2。研究了p-TDPVBi厚度由3nm变化到9nm,OLED器件的电流密度-电压特性曲线、亮度-电压曲线及电流效率-电压和功率效率-电压等光电性能的变化。  相似文献   

16.
研究了Liq:Bphen混合层的电子传输特性.采用该混合层作为共基质电子传输层制备了结构为[ITO/m-MTDATA/NPB/Alq3/Liq(33%):Bphen/LiF/Al]的有机发光器件,基于共基质电子传输层的器件驱动电压比传统器件降低了13%而效率却提高了21%.研究袁明通过优化混合层的掺杂浓度,可以显著提高电子传输层的导电率,降低驱动电压,从而提高器件的效率.  相似文献   

17.
汪津 《光电子.激光》2009,(12):1589-1591
在空穴传输层(HTL)和发光层(EML)间插入4,4-N,N′-二咔唑基联苯(CBP)超薄层,制备了结构为ITO/NPB/CBP(xnm)/CBP:Ir(ppy)3/BCP/Alq3/LiF/Al有机电致磷光器件。与未插入CBP超薄层的器件相比,CBP超薄层的引入可以有效阻挡Ir(ppy)3的三线态能量通过Dexter能量转移到HTL的NPB中,减少无辐射能量损失,提高了器件发光效率。调整CBP薄层的厚度,当x为3nm时,器件的效率提高幅度最大,从x为0nm时的9.0cd/A提高到16.9cd/A。  相似文献   

18.
采用DCJTB作为色彩转换膜实现白色有机电致发光的研究   总被引:2,自引:2,他引:0  
采用橙红色荧光材料4-(二氰基亚甲基)-2-叔丁基-6-(1,1,7,7-四甲基久罗尼定基-4-乙烯基)-4H-吡喃(DCJTB)作为色彩转换材料,结合蓝色有机电致发光器件实现了较好的白光发射。分别通过真空蒸镀和旋转涂覆两种不同的工艺进行色彩转换膜(CCL)的制备,发现不同的转换膜制备工艺对白光器件的性能影响不明显。当采用浓度比例为20mg/ml的DCJTB溶液通过旋涂方法制备CCL后,所得到白光器件的起亮电压为3.4V,在12V时达到最大亮度为1 939cd/m2,且该器件的最大电流效率为1.34cd/A(在电流密度为3.23mA/cm2时)。当驱动电压从5V增加到9V时,该白光器件的色坐标仅从(0.36,0.33)变化到(0.33,0.31)。表现出良好的色纯度和色稳定性。  相似文献   

19.
具有高效空穴注入的高电子传输层的白光电致发光器件   总被引:1,自引:1,他引:0  
以M003或m-MTDATA作为空穴注入层,Alqa或Bphen作为电子传输层组合了4组白色有机电致发光器件.发光层为9,10-bis(2-naphthyl)-2-t-butylanthracene(TBADN)掺杂3%的P-bis(P-N,N-diphenyl-aminos-tyryl)benzene(DSA-ph)作为蓝色掺杂剂和0.05%的4-(dicyanomethylene)-2-t-bul:yl-6-(1,1,7,7,-tetramethyl-julolidy-9-enyl)-4H-pyran(DCJTB)作为红色掺杂剂.研究表明基于M003//Bphen结构的器件大大降低了驱动电压,改善了功率效率,在电流密度为20 mA/cm2时,其值分别为5.43 V和4.54 lm/W.与基于m-MTDA-TA//Alq3结构的器件相比,驱动电压降低了40%,功率效率提高57%.  相似文献   

20.
制备了采用9,10-di-(2-naphthyl)anthracene(ADN)作为主体,4-(dicya-nomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran(DCJTB)作为红色发光中心,2,5,8,11-tetra-tertbutylperylene(TBPe)作为辅助掺杂剂的红光有机电致发光器件。4,4′,4″-tris[2-naphthyl(phenyl)amino]triphenylamine(2TNATA)用作空穴注入材料,4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl(NPB),tris-(8-hydroxyquinoline)aluminum(Alq3)用于空穴和电子传输。实验结果表明,掺有DCJTB的ADN也可实现红色发光,掺入TBPe作为辅助掺杂,可以提高该红光器件的效率,但几乎不改变器件色坐标。此外,2%TBPe(质量分数)作为辅助掺杂的器件表现出最佳的流明效率和最大升温速率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号