首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellulose‐based triboelectric nanogenerators (TENGs) have gained increasing attention. In this study, a novel method is demonstrated to synthesize cellulose‐based aerogels and such aerogels are used to fabricate TENGs that can serve as mechanical energy harvesters and self‐powered sensors. The cellulose II aerogel is fabricated via a dissolution–regeneration process in a green inorganic molten salt hydrate solvent (lithium bromide trihydrate), where. The as‐fabricated cellulose II aerogel exhibits an interconnected open‐pore 3D network structure, higher degree of flexibility, high porosity, and a high surface area of 221.3 m2 g?1. Given its architectural merits, the cellulose II aerogel‐based TENG presents an excellent mechanical response sensitivity and high electrical output performance. By blending with other natural polysaccharides, i.e., chitosan and alginic acid, electron‐donating and electron‐withdrawing groups are introduced into the composite cellulose II aerogels, which significantly improves the triboelectric performance of the TENG. The cellulose II aerogel‐based TENG is demonstrated to light up light‐emitting diodes, charge commercial capacitors, power a calculator, and monitor human motions. This study demonstrates the facile fabrication of cellulose II aerogel and its application in TENG, which leads to a high‐performance and eco‐friendly energy harvesting and self‐powered system.  相似文献   

2.
Triboelectric nanogenerators (TENGs) are gaining much research interest recently owing to their facile and cost‐effective device structure. However, the effect of relative humidity (in moisture atmosphere) on the output performance still needs to be resolved. Herein, a pouch‐type TENG is proposed to significantly reduce the effect of relative humidity on its electrical output and a stable performance is also attained in a humid environment. In this regard, a dielectric and dielectric materials‐based TENG (DD‐TENG) is first developed using nanoarchitecture polydimethylsiloxane (NA‐PDMS) and multiwalled carbon nanotube/nylon composite layers as a triboelectric material with the negative and positive tendencies, respectively. The NA‐PDMS and nylon composite layers play a key role in increasing the surface contact area and surface charge density between the dielectric/triboelectric materials as well as the output performance of DD‐TENG. However, the DD‐TENG device exhibits a stable and high output performance with the effective output power density of ≈25.35 W m?2. Additionally, the performance of the pouch‐type DD‐TENG device is not almost affected even though the relative humidity is increased from 35 to 81%, while it is dramatically decreased for the nonpouch‐type device. Finally, the pouch‐type DD‐TENG is employed as a wearable device to effectively harvest the mechanical energy from daily human activities.  相似文献   

3.
Zeolitic imidazole framework (ZIF), a subfamily of metal–organic framework (MOF), offers excellent chemical and thermal stability in addition to other MOF advantages. The triboelectric series predominantly consist of few metals and mainly polymers that are not suitable for the development of sensors with high selectivity and specificity. The development of multifunctional, tunable materials is of utmost importance for extending the applications of a triboelectric nanogenerator (TENG). The TENG based on the ZIF subfamily materials (ZIF‐7, ZIF‐9, ZIF‐11, and ZIF‐12) is reported here. The surface roughness, structural, morphological, and surface potential analysis reveals the detailed characteristics of the ZIF family members. The ZIFs and Kapton are used as triboelectric layers for the ZIF‐TENG fabrication. The device is analyzed in detail for its electrical performance (voltage, current, charge, stability, load matching analysis, and capacitor charging). The ZIF‐7 TENG generates the highest output of 60 V and 1.1 µA in vertical contact‐separation mode. Finally, various low‐power electronics are successfully driven with the capacitor charged by the output of the ZIF‐7 TENG.  相似文献   

4.
A stretchable‐rubber‐based (SR‐based) triboelectric nanogenerator (TENG) is developed that can not only harvest energy but also serve as self‐powered multifunctional sensors. It consists of a layer of elastic rubber and a layer of aluminum film that acts as the electrode. By stretching and releasing the rubber, the changes of triboelectric charge distribution/density on the rubber surface relative to the aluminum surface induce alterations to the electrical potential of the aluminum electrode, leading to an alternating charge flow between the aluminum electrode and the ground. The unique working principle of the SR‐based TENG is verified by the coupling of numerical calculations and experimental measurements. A comprehensive study is carried out to investigate the factors that may influence the output performance of the SR‐based TENG. By integrating the devices into a sensor system, it is capable of detecting movements in different directions. Moreover, the SR‐based TENG can be attached to a human body to detect diaphragm breathing and joint motion. This work largely expands the applications of TENG not only as effective power sources but also as active sensors; and opens up a new prospect in future electronics.  相似文献   

5.
A spherical three‐dimensional triboelectric nanogenerator (3D‐TENG) with a single electrode is designed, consisting of an outer transparent shell and an inner polyfluoroalkoxy (PFA) ball. Based on the coupling of triboelectric effect and electrostatic effect, the rationally developed 3D‐TENG can effectively scavenge ambient vibration energy in full space by working at a hybridization of both the contact‐separation mode and the sliding mode, resulting in the electron transfer between the Al electrode and the ground. By systematically investigating the output performance of the device vibrating under different frequencies and along different directions, the TENG can deliver a maximal output voltage of 57 V, a maximal output current of 2.3 μA, and a corresponding output power of 128 μW on a load of 100 MΩ, which can be used to directly drive tens of green light‐emitting diodes. Moreover, the TENG is utilized to design the self‐powered acceleration sensor with detection sensitivity of 15.56 V g‐1. This work opens up many potential applications of single‐electrode based TENGs for ambient vibration energy harvesting techniques in full space and the self‐powered vibration sensor systems.  相似文献   

6.
A triboelectric nanogenerators (TENG) are of great interest as emerging power harvesters because of their simple device architecture with unprecedented high efficiency. Despite the substantial development of new constituent materials and device architectures, a TENG with a switchable surface on a single device, which allows for facile control of the triboelectric output performance, remains a challenge. Here, a supramolecular route for fabricating a novel TENG based on an alkali‐metal‐bound porous film, where the alkali metal ions are readily switched among one another is demonstrated. The soft nanoporous TENG contains numerous SO3? groups on the surface of nanopores prepared from the supramolecular assembly of sulfonic‐acid‐terminated polystyrene and poly(2‐vinylpyridine) (P2VP), followed by soft etching of P2VP. Selective binding of alkali metal ions, including Li+, Na+, K+, and Cs+, with SO3? groups enables the development of mechanically robust alkali‐metal‐ion‐decorated TENGs. The triboelectric output performance of the devices strongly depends on the alkali metal ion species, and the output power ranges from 11.5 to 256.5 µW. This wide‐range triboelectric tuning can be achieved simply by a conventional ion exchange process in a reversible manner, thereby allowing reversible control of the output performance in a single device platform.  相似文献   

7.
As vehicles become smarter, an alternative power solution will become increasingly important for future vehicle development. With this context, a triboelectric nanogenerator (TENG) is proposed which fully sits on tires and consists of textile‐based tire materials. Both polydimethylsiloxane‐coated silver textile, serving as an external tire tread material, and nylon woven textile, serving as an internal tire cord material, performing as opposing triboelectric materials, are well adaptable for rolling tires. It is demonstrated that tire material‐based TENG performs at its maximum as it makes mutual contact with the road. The power generation property is characterized under different driving situations such as different tire rotation speeds and varying numbers of devices on the tires. The TENG demonstrates a maximum output voltage and a current of about 225 V and 42 µA, respectively, along with an output power of 0.5 mW at optimum load. The work offers the possibility to not only directly operate minute power‐consuming electronics but also collect power and store it while driving a vehicle.  相似文献   

8.
Traditional triboelectric nanogenerator (TENG)‐based self‐powered chemical‐sensing systems are demonstrated by measuring the triboelectric effect of the sensing materials altered by the external stimulus. However, the limitations of triboelectric sensing materials and instable outputs caused by ambient environment significantly restrict their practical applications. In this work, a stable and reliable self‐powered chemical‐sensing system is proposed by coupling triboelectric effect and chemoresistive effect. The whole system is constructed as the demo of a self‐powered vehicle emission test system by connecting a vertical contact–separate mode TENG as energy harvester with a series‐connection resistance‐type gas sensor as exhaust detector and the parallel‐connection commercial light‐emitting diodes (LEDs) as alarm. The output voltage of TENG varies with the variable working states of the gas sensor and then directly reflects on the on/off status of the LEDs. The working mechanism can be ascribed to the specific output characteristics of the TENG tuned by the load resistance of the gas sensor, which is responded to the gas environment. This self‐powered sensing system is not affected by working frequency and requires no external power supply, which is favorable to improve the stability and reliability for practical application.  相似文献   

9.
With the fast development of integrated circuit technology and internet of things, sensors with multifunctional characteristics are desperately needed. This work presents an integrated electromagnetic‐triboelectric active sensor (ETAS) for simultaneous detection of multiple mechanical triggering signals. The good combination of a contact‐separation mode triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG) realizes the complement of their individual advantages. The theoretical calculation and analysis of EMG and TENG are performed to understand the relationship between their output and the external mechanical signals. The experimental results show that the output voltage of TENG part is suitable to detect the magnitude of the external triggering force with a sensitivity of about 2.01 V N?1. Meanwhile, the output current of EMG part is more appropriate to reflect the triggering velocity and the sensitivity is about 4.3 mA (m s?1)?1. Moreover, both the TENG part and the EMG part exhibit good stabilities after more than 20 000 cycles of force loading and unloading. One ETAS that can record the typing behavior of the finger precisely is demonstrated. In addition, the TENG part can harvest the mechanical energy during typing for possible powering of tiny electronics. This ETAS has promising applications in complex human–machine interface, personal identification, and security system.  相似文献   

10.
Development of novel nitrogen fixation technology is realistically significant for the fertilizer industry and agriculture. Traditional plasma‐induced nitrogen fixation technology is severely limited in some instances because this route generally requires a continuous power input with the features of complicated apparatus fabrication, high cost, nonportability, etc. Herein, a triboelectric nanogenerator (TENG)‐driven microplasma discharge–based nitrogen fixation system is conceived by integrating a high‐voltage output TENG and a discharge reactor. The novel TENG has the capability to generate a high voltage of about 1300 V without additional auxiliary. The generated voltage can induce microplasma discharge under atmospheric environment in the discharge reactor, where nitrogen gas is successfully converted into nitrogen dioxide and nitric acid, and atmospheric nitrogen fixation is therefore realized. The TENG‐driven microplasma discharge‐based nitrogen fixation system can serve as a nitrogenous fertilizer supplier, and correspondingly, NaNO3 fertilizer is produced via driving the system by human walking stimuli for crop cultivation. A promising and energy‐saving atmospheric nitrogen fixation strategy with environmental friendliness, flexible operation, and high safety is offered.  相似文献   

11.
Harvesting ambient mechanical energy is a key technology for realizing self‐powered electronics, which has tremendous applications in wireless sensing networks, implantable devices, portable electronics, etc. The currently reported triboelectric nanogenerator (TENG) mainly uses solid materials, so that the contact between the two layers cannot be 100% with considering the roughness of the surfaces, which greatly reduces the total charge density that can be transferred and thus the total energy conversion efficiency. In this work, a liquid‐metal‐based triboelectric nanogenerator (LM‐TENG) is developed for high power generation through conversion of mechanical energy, which allows a total contact between the metal and the dielectric. Due to that the liquid–solid contact induces large contacting surface and its shape adaptive with the polymer thin films, the LM‐TENG exhibits a high output charge density of 430 μC m?2, which is four to five times of that using a solid thin film electrode. And its power density reaches 6.7 W m?2 and 133 kW m?3. More importantly, the instantaneous energy conversion efficiency is demonstrated to be as high as 70.6%. This provides a new approach for improving the performance of the TENG for special applications. Furthermore, the liquid easily fluctuates, which makes the LM‐TENG inherently suitable for vibration energy harvesting.  相似文献   

12.
Triboelectric nanogenerators (TENG) are a possible power source for wearable electronics, but the conventional electrode materials for TENG are metals such as Cu and Al that are easy to be oxidized or corroded in some harsh environments. In this paper, metal electrode material is replaced by an electrical conducting polymer, polypyrrole (PPy), for the first time. Moreover, by utilizing PPy with micro/nanostructured surface as the triboelectric layer, the charge density generated is significantly improved, more superior to that of TENG with metals as the triboelectric layer. As this polymer‐based TENG is further integrated with PPy‐based supercapacitors, an all‐plastic‐materials based self‐charging power system is built to provide sustainable power with excellent long cycling life. Since the environmental friendly materials are adopted and the facile electrochemical deposition technique is applied, the new self‐charging power system can be a practical and low cost power solution for many applications.  相似文献   

13.
As a new energy harvesting strategy, triboelectric nanogenerators which have a broad application prospect in collecting environmental energy, human body mechanical energy, and supplying power for low‐power electronic devices, have attracted extensive attention. However, technology challenges still exist in the stretchability for the preparation of some high‐performance triboelectric materials. In this work, a new strategy for nonmetallic nylon‐modified triboelectric nanogenerators (NM‐TENGs) is reported. Nylon is introduced as a high performance friction material to enhance the output performance of the stretchable TENG. The uniform matrix reduces the difficulty of heterogeneous integration and enhances the structural strength. The open‐circuit voltage (VOC) and short‐circuit current (ISC) of NM‐TENG can reach up to 1.17 kV and 138 µA, respectively. The instantaneous power density reaches 11.2 W m?2 and the rectified output can directly light ≈480 LEDs. The transferred charge density is ≈100 µC m?2 in one cycle when charging the capacitor. In addition, a low‐power electronic clock can be driven directly by the rectified signal without additional circuits. NM‐TENG also has high enough strain rate and can be attached to the human body for energy harvesting effectively. This work provides a new idea for fabrication of stretchable TENGs and demonstrates their potential application.  相似文献   

14.
With its light weight, low cost, and high efficiency, the triboelectric nanogenerator (TENG) is considered a sustainable and renewable energy source for self‐powered or mobile electronics. However, the performance of TENG is seriously affected by humid environment. Here, for the first time, TENG with improved performance under high humidity is obtained by adding HKUST‐1 (Cu3(BTC)2, (BTC = 1,3,5‐benzenetricarboxylate or trimesate)) to polydimethylsiloxane (PDMS) matrix. At 10% relative humidity (RH), an effective power (3.17 mW) of the composite TENG based on 5 wt% HKUST‐1 is obtained at a load resistance of 10 MΩ, which is 13 times higher than that of the TENG based on pure PDMS. More importantly, the performance of composite TENG remains constant or becomes higher even under high humidity, while that of conventional TENG dramatically decreases at the same condition. The excellent humidity‐resistive performance comes from the remarkably enhanced electron‐trapping capacity and dielectric constant due to the absorption of HKUST‐1 to water molecules. This work not only demonstrates that a metal organic framework is an effective filler to improve the performance of TENG but also provides a novel strategy to obtain high output properties under highly humid environments by increasing the electron‐trapping capacity and dielectric constant.  相似文献   

15.
Recent progress in triboelectric nanogenerators (TENGs) has demonstrated their promising potential as a high‐efficiency mechanical energy harvesting technology, and plenty of effort has been devoted to improving the power output by maximizing the triboelectric surface charge density. However, due to high‐voltage air breakdown, most of the enhanced surface charge density brought by material/surface optimization or external ion injection is not retainable or usable for electricity generation during the operation of contact‐separation‐triggered TENGs. Here, the existence of the air breakdown effect in a contact‐separation mode TENG with a low threshold surface charge density of ≈40–50 µC m?2 is first validated under the high impedance external load, and then followed by the theoretical study of the maximized effective energy output as limited by air breakdown for contact‐separation‐triggered TENGs. The effects of air pressure and gas composition are also studied and propose promising solutions for reducing the air breakdown effect. This research provides a crucial fundamental study for TENG technology and its further development and applications.  相似文献   

16.
Making use of water wave energy at large is one of the most attractive, low‐carbon, and renewable ways to generate electric power. The emergence of triboelectric nanogenerator (TENG) provides a new approach for effectively harvesting such low‐frequency, irregular, and “random” energy. In this work, a TENG array consisting of spherical TENG units based on spring‐assisted multilayered structure is devised to scavenge water wave energy. The introduction of spring structure enhances the output performance of the spherical TENG by transforming low‐frequency water wave motions into high‐frequency vibrations, while the multilayered structure increases the space utilization, leading to a higher output of a spherical unit. Owing to its unique structure, the output current of one spherical TENG unit could reach 120 µA, which is two orders of magnitude larger than that of previous rolling spherical TENG, and a maximum output power up to 7.96 mW is realized as triggered by the water waves. The TENG array fabricated by integrating four units is demonstrated to successfully drive dozens of light‐emitting diodes and power an electronic thermometer. This study provides a new type of TENG device with improved performance toward large‐scale blue energy harvesting from the water waves.  相似文献   

17.
The preparation of ferroelectric polymer–metallic nanowire composite nanofiber triboelectric layers is described for use in high‐performance triboelectric nanogenerators (TENGs). The electrospun polyvinylidene fluoride (PVDF)–silver nanowire (AgNW) composite and nylon nanofibers are utilized in the TENGs as the top and bottom triboelectric layers, respectively. The electrospinning process facilitates uniaxial stretching of the polymer chains, which enhances the formation of the highly oriented crystalline β‐phase that forms the most polar crystalline phase of PVDF. The addition of AgNWs further promotes the β‐phase crystal formation by introducing electrostatic interactions between the surface charges of the nanowires and the dipoles of the PVDF chains. The extent of β‐phase formation and the resulting variations in the surface charge potential upon the addition of nanowires are systematically analyzed using X‐ray diffraction (XRD) and Kelvin probe force microscopy techniques. The ability of trapping the induced tribocharges increases upon the addition of nanowires to the PVDF matrix. The enhanced surface charge potential and the charge trapping capabilities of the PVDF–AgNW composite nanofibers significantly enhance the TENG output performances. Finally, the mechanical stability of the electrospun nanofibers is dramatically enhanced while maintaining the TENG performances by applying thermal welding near the melting temperature of PVDF.  相似文献   

18.
Dielectric elastomers are a type of actuator materials that exhibit excellent performance as artificial muscles, but a high driving voltage is required for their operation. By using the amazingly high output voltage generated from a triboelectric nanogenerator (TENG), a thin film dielectric elastomer actuator (DEA) can be directly driven by the contact‐separation motion of TENG, demonstrating a self‐powered actuation system. A TENG with a tribo surface area of 100 cm2 can induce an expansion strain of 14.5% for the DEA samples (electrode diameter of 0.6 cm) when the system works stably within the contact‐separation velocity ranging from 0.1 to 10 cm s?1. Finally, two simple prototypes of an intelligent switch and a self‐powered clamper based on the TENG and DEA are demonstrated. These results prove that the dielectric elastomer is an ideal material to work together with TENG and thereby the fabricated actuation system can potentially be applied to the field of electronic skin and soft robotics.  相似文献   

19.
In this work, a self‐powered electrowetting valve (SPEV) driven by an energy‐harvesting triboelectric nanogenerator (TENG) is reported. The TENG (5 × 5 cm2) can produce an open‐circuit voltage of 380 V by applying a mechanical stimulus, which is much higher than the actuation voltage of the SPEV (130 V). Once actuated, the electrowetting valve can be instantly switched on at a response time of 0.18 s, allowing liquid reagent to flow through the valve. The SPEV can be used for simultaneous addition of multiple reagents in an enzyme‐linked immunosorbent assay on a paper‐based microfluidic analytical device (µPAD). This assay involves a chromogenic reaction that achieves effective detection of alpha‐fetoprotein, a critical tumor marker for early diagnosis of liver cancer. The SPEV reported in this work can be potentially used in other complex multiprocedure µPADs, which will potentially enable portable, accessible, and cost‐effective assays for early diagnosis, food safety, pollution detection, etc.  相似文献   

20.
Rapid growth of electronic textile increases the demand for textile‐based power sources, which should have comparable lightweight, flexibility, and comfort. In this work, a self‐charging power textile interwoven by all‐yarn‐based energy‐harvesting triboelectric nanogenerators (TENG) and energy‐storing yarn‐type asymmetric supercapacitors (Y‐ASC) is reported. Common polyester yarns with conformal Ni/Cu coating are utilized as 1D current collectors in Y‐ASCs and electrodes in TENGs. The solid‐state Y‐ASC achieves high areal energy density (≈78.1 µWh cm?2), high power density (14 mW cm?2), stable cycling performance (82.7% for 5000 cycles), and excellent flexibility (1000 cycles bending for 180°). The TENG yarn can be woven into common fabrics with desired stylish designs to harvest energy from human daily motions at high output (≈60 V open‐circuit voltage and ≈3 µA short‐circuit current). The integrated self‐charging power textile is demonstrated to power an electronic watch without extra recharging by other power sources, suggesting its promising applications in electronic textiles and wearable electronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号