首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photothermoelectric (PTE) effect that originates from the temperature difference within thermoelectric materials induced by light absorption can be used as the mechanism for a light sensor in optoelectronic applications. In this work, a PTE‐based photodetector is reported using a spin thermoelectric structure consisting of CoFeB/Pt metallic bilayers and its signal enhancement achieved by incorporating a plasmonic structure consisting of Au nanorod arrays. The thermoelectric voltage of the bilayers markedly increases by 60 ± 10% when the plasmon resonance condition of the Au nanorods is matched to the wavelength of the incident laser. Full‐wave electromagnetic simulations reveal that the signal enhancement is due to the increase in light absorption and consequential local heating. Moreover, the alignment of the Au nanorods makes the thermoelectric voltages sensitive to the polarization state of the laser, thereby enabling the detection of light polarization. These results demonstrate the feasibility of a hybrid device utilizing plasmonic and spin‐thermoelectric effects as an efficient PTE‐based photodetector.  相似文献   

2.
A Richardson constant (RC) of 8.92 Acm?2K?2 from the conventional Richardson plot has been obtained because the current–voltage data of the device quite well obey the thermionic emission (TE) model in 190–320 K range. The experimental nT versus T plot of the device has given a value of T0 = 7.40 K in temperature range of 160–320 K. The deviations from the TE current mechanism at temperatures below 190 K have been ascribed to the patches introduced by lateral inhomogeneity of the barrier heights. Therefore, an experimental RC value of 7.49 A(cmK)?2 has been obtained by considering Tung’s patch model in the temperature range of 80–190 K. This value is in very close agreement with the known value of 8.16 Acm?2K?2 for n-type GaAs.  相似文献   

3.
陈刚  李哲洋  柏松  任春江 《半导体学报》2007,28(9):1333-1336
采用自主外延的4H-SiC外延片,利用PECVD生长的SiO2做场板介质,B 离子注入边缘终端技术,制造了Ti/4H-SiC肖特基势垒二极管.测试结果表明,Ti/4H-SiC肖特基势垒二极管的理想因子n=1.08,势垒高度(ψe)=1.05eV,串联电阻为6.77mΩ·cm2,正向电压为4V时,电流密度达到430A/cm2.反向击穿电压大于1.1kV,室温下,反向电压为1.1kV时,反向漏电流为5.96×10-3 A/cm2.  相似文献   

4.
陈刚  李哲洋  柏松  任春江 《半导体学报》2007,28(9):1333-1336
采用自主外延的4H-SiC外延片,利用PECVD生长的SiO2做场板介质,B+离子注入边缘终端技术,制造了Ti/4H-SiC肖特基势垒二极管.测试结果表明,Ti/4H-SiC肖特基势垒二极管的理想因子n=1.08,势垒高度(ψe)=1.05eV,串联电阻为6.77mΩ·cm2,正向电压为4V时,电流密度达到430A/cm2.反向击穿电压大于1.1kV,室温下,反向电压为1.1kV时,反向漏电流为5.96×10-3 A/cm2.  相似文献   

5.
PdAl was selected as a reactive contact to n-(In0.52Al0.48)As with the intention of forming a thin, AlAs-enriched interlayer of graded (In1−xAlx)As semiconductor alloy, following rapid thermal annealing. Selection of PdAl was based on the experimentally established existence of a quasi-reciprocal phase relationship. A Schottky barrier enhancement of 0.07 eV (measured by current-voltage (I-V)) and 0.09 eV (measured by capacitance-voltage (C-V)) was found following a 1-min anneal at 450°C. High-resolution transmission electron microscopy (HRTEM) examination showed the presence of an edge dislocation in the interlayer alloy, suggesting an enrichment of AlAs. Schottky barrier enhancement is in qualitative agreement with the prediction of the combined thermodynamic/kinetic model.  相似文献   

6.
As a coupling effect of pyroelectric and photoelectric effect, pyro‐phototronic effect has demonstrated an excellent tuning role for fast response p–n junction photodetectors (PDs). Here, a comprehensive pyro‐phototronic effect is utilized to design and fabricate a self‐powered and flexible ultraviolet PD based on the ZnO/Ag Schottky junction. By using the primary pyroelectric effect, the maximal transient photoresponsivity of the self‐powered PDs can reach up to 1.25 mA W?1 for 325 nm illumination, which is improved by 1465% relative to that obtained from the steady‐state signal. The relative persistent secondary pyroelectric effect weakens the height of Schottky barrier, leading to a reduction of the steady‐state photocurrent with an increase in the power density. When the power density is large enough, the steady‐state photocurrent turns into a reverse direction. The corresponding tuning mechanisms of the comprehensive pyro‐phototronic effect on transient and steady‐state photocurrent are revealed based on the bandgap diagrams. The results may help us to further clarify the mechanism of the pyro‐phototronic effect on the photocurrent and also provide a potential way to optimize the performance of self‐powered PDs.  相似文献   

7.
In response to the call for a physiologically‐friendly light at night that shows low color temperature, a candle light‐style organic light emitting diode (OLED) is developed with a color temperature as low as 1900 K, a color rendering index (CRI) as high as 93, and an efficacy at least two times that of incandescent bulbs. In addition, the device has a 80% resemblance in luminance spectrum to that of a candle. Most importantly, the sensationally warm candle light‐style emission is driven by electricity in lieu of the energy‐wasting and greenhouse gas emitting hydrocarbon‐burning candles invented 5000 years ago. This candle light‐style OLED may serve as a safe measure for illumination at night. Moreover, it has a high color rendering index with a decent efficiency.  相似文献   

8.
Hybrid Perovskites have emerged as a class of highly versatile functional materials with applications in solar cells, photodetectors, transistors, and lasers. Recently, there have also been reports on perovskite‐based resistive switching (RS) memories, but there remain open questions regarding device stability and switching mechanism. Here, an RS memory based on a high‐quality capacitor structure made of an MAPbBr3 (CH3NH3PbBr3) perovskite layer sandwiched between Au and indium tin oxide (ITO) electrodes is reported. Such perovskite devices exhibit reliable RS with an ON/OFF ratio greater than 103, endurance over 103 cycles, and a retention time of 104 s. The analysis suggests that the RS operation hinges on the migration of charged ions, most likely MA vacancies, which reversibly modifies the perovskite bulk transport and the Schottky barrier at the MAPbBr3/ITO interface. Such perovskite memory devices can also be fabricated on flexible polyethylene terephthalate substrates with high bendability and reliability. Furthermore, it is found that reference devices made of another hybrid perovskite MAPbI3 consistently exhibit filament‐type switching behavior. This work elucidates the important role of processing‐dependent defects in the charge transport of hybrid perovskites and provides insights on the ion‐redistribution‐based RS in perovskite memory devices.  相似文献   

9.
Photon‐coupling and electron dynamics are the key processes leading to the photocatalytic activity of plasmonic metal‐semiconductor nanohybrids. To better utilize and explore these effects, a facile large‐scale synthesis route to form Ag@AgCl cubic cages with well‐defined hollow interiors is carried out using a water‐soluble sacrificial salt‐crystal‐template process. Theoretical calculations and experimental probes of the electron transfer process are used in an effort to gain insight into the underlying plasmonic properties of the Ag@AgCl materials. Efficient utilization of solar energy to create electron‐hole pairs is attributed to the significant light confinement and enhancement around the Ag/AgCl interfacial plasmon hot spots and multilight‐reflection inside the cage structure. More importantly, an ultrafast electron transfer process (≤150 fs) from Ag nanoparticles to the AgCl surface is detected, which facilitates the charge separation efficiency in this system, contributing to high photocatalytic activity and stability of Ag@AgCl photocatalyst towards organic dye degradation.  相似文献   

10.
The alteration in protein conformation not only affects the performance of its biological functions, but also leads to a variety of protein‐mediated diseases. Developing a sensitive strategy for protein detection and monitoring its conformation changes is of great significance for the diagnosis and treatment of protein conformation diseases. Herein, a plasmon‐enhanced fluorescence (PEF) sensor is developed, based on an aggregation‐induced emission (AIE) molecule to monitor conformational changes in protein, using prion protein as a model. Three anthracene derivatives with AIE characteristics are synthesized and a water‐miscible sulfonate salt of 9,10‐bis(2‐(6‐sulfonaphthalen‐2‐yl)vinyl)anthracene (BSNVA) is selected to construct the PEF–AIE sensor. The sensor is nearly non‐emissive when it is mixed with cellular prion protein while emits fluorescence when mixed with disease‐associated prion protein (PrPSc). The kinetic process of conformational conversion can be monitored through the fluorescence changes of the PEF–AIE sensor. By right of the amplified fluorescence signal, this PEF–AIE sensor can achieve a detection limit 10 pM lower than the traditional AIE probe and exhibit a good performance in human serum sample. Furthermore, molecular docking simulations suggest that BSNVA tends to dock in the β‐sheet structure of PrP by hydrophobic interaction between BSNVA and the exposed hydrophobic residues.  相似文献   

11.
Organic semiconductors have attracted tremendous attention in the past few years, thanks to their excellent flexibility, solution‐processability, low‐cost, chemical versatility, etc. Particularly, organic solar cells based on ternary heterojunctions have shown remarkable device performance, with the recent development of nonfullerene acceptor materials. These novel materials are also promising for photodetection. However, there are several key limits facing organic photodetectors, such as relatively large bandgaps, poor charge transport, and stability. In this work, a novel nonfullerene acceptor—COi8DFIC—is introduced, blended with a fullerene derivative and a donor to form ternary heterojunctions. After optimization, photodiodes based on such ternary blends exhibit compelling performance metrics, including low dark current, decent responsivity, large linear dynamic range, fast response, and excellent stability. This device performance is actually on a par with the established silicon technology, suggesting great potential for photodetection and imaging.  相似文献   

12.
In order to fabricate polymer field‐effect transistors (PFETs) with high electrical stability under bias‐stress, it is crucial to minimize the density of charge trapping sites caused by the disordered regions. Here we report PFETs with excellent electrical stability comparable to that of single‐crystalline organic semiconductors by specifically controlling the molecular weight (MW) of the donor‐acceptor type copolymer semiconductors, poly (didodecylquaterthiophene‐alt‐didodecylbithiazole). We found that MW‐induced thermally structural transition from liquid‐crystalline to semi‐crystalline phases strongly affects the device performance (charge‐carrier mobility and electrical bias‐stability) as well as the nanostructures such as the molecular ordering and the morphological feature. In particular, for the polymer with a MW of 22 kDa, the transfer curves varied little (ΔVth = 3~4 V) during a period of prolonged bias stress (about 50 000 s) under ambient conditions. This enhancement of the electrical bias‐stability can be attributed to highly ordered liquid‐crystalline nanostructure of copolymer semiconductors on dielectric surface via the optimization of molecular weights.  相似文献   

13.
Orange‐emitting phosphorescent copolymers containing iridium complexes and bis(carbazolyl)fluorene groups in their side chains are employed as the emissive layer in multilayer organic light‐emitting diodes (OLEDs). The efficiency of the OLED devices is optimized by varying characteristics of the copolymers: the molecular weight, the iridium loading level, and the nature and length of the linker between the side chains and the polymer backbone. A maximum efficiency of 4.9 ± 0.4%, 8.8 ± 0.7 cd A−1 at 100 cd m−2 is achieved with an optimized copolymer.  相似文献   

14.
To enhance the performance of organic devices, doping and graded mixed‐layer structures, formed by co‐evaporation methods, have been extensively adopted in the formation of organic thin films. Among the criteria for selecting materials systems, much attention has been paid to the materials' energy‐band structure and carrier‐transport behavior. As a result, some other important characteristics may have been overlooked, such as material compatibility or solubility. In this paper, we propose a new doping method utilizing fused organic solid solutions (FOSSs) which are prepared via high‐pressure and high‐temperature processing. By preparing fused solid solutions of organic compounds, the stable materials systems can be selected for device fabrication. Furthermore, by using these FOSSs, doping concentration and uniformity can be precisely controlled using only one thermal source. As an example of application in organic thin films, high‐performance organic light‐emitting diodes with both single‐color and white‐light emission have been prepared using this new method. Compared to the traditional co‐evaporation method, a FOSS provides us with a more convenient way to optimize the doping system and fabricate relatively complicated organic devices.  相似文献   

15.
Phosphorescent organic light‐emitting diodes (OLEDs) with ultimate efficiency in terms of the external quantum efficiency (EQE), driving voltage, and efficiency roll‐off are reported, making use of an exciplex‐forming co‐host. This exciplex‐forming co‐host system enables efficient singlet and triplet energy transfers from the host exciplex to the phosphorescent dopant because the singlet and triplet energies of the exciplex are almost identical. In addition, the system has low probability of direct trapping of charges at the dopant molecules and no charge‐injection barrier from the charge‐transport layers to the emitting layer. By combining all these factors, the OLEDs achieve a low turn‐on voltage of 2.4 V, a very high EQE of 29.1% and a very high power efficiency of 124 lm W?1. In addition, the OLEDs achieve an extremely low efficiency roll‐off. The EQE of the optimized OLED is maintained at more than 27.8%, up to 10 000 cd m?2.  相似文献   

16.
High electric conductivity is observed in multilayer stack of m‐MTDATA/F16CuPc. Impedance data shows that the circuit resistance is significantly dropped by three orders of magnitude from ~0.2 MΩ to ~0.4 kΩ when the number of alternating units is increased from one to six, keeping a total thickness of 300 nm. Impedance results show that as the number of alternating units increases, the organic stack shows an increasing capacitance and a decreasing resistance. This result suggests the increasing charges accumulate at the heterojunctions, leading to reduction in overall film resistance. The application of the high conductive units in OLED device results in stability enhancement.  相似文献   

17.
Hydrogen‐bonded pigments are remarkably stable high‐crystal lattice energy organic solids. Here a lesser‐known family of compounds, the epindolidiones, which demonstrates electronic transport with extraordinary stability, even in highly demanding aqueous environments, is reported. Hole mobilities in the range 0.05–1 cm2 V–1 s–1 can be achieved, with lower electron mobilities of up to 0.1 cm2 V–1 s–1. To help understand charge transport in epindolidiones, X‐ray diffraction is used to solve the crystal structure of 2,8‐difluoroepindolidione and 2,8‐dichloroepindolidione. Both derivatives crystallize with a linear‐chain H‐bonding lattice featuring two‐dimensional π–π stacking. Powder diffraction indicates that the unsubstituted epindolidione has very similar crystallinity. All types of epindolidiones measured here display strong low‐energy optical emission originating from excimeric states, which coexists with higher‐energy fluorescence. This can be exploited in light‐emitting diodes, which show the same hybrid singlet and low‐energy excimer electroluminescence. Low‐voltage FETs are fabricated with epindolidione, which operate reliably under repeated cyclic tests in different ionic solutions within the pH range 3–10 without degradation. Finally, in order to overcome the insolubility of epindolidiones in organic solvents, a chemical procedure is devised to allow solution‐processing via the introduction of suitable thermolabile solubilizing groups. This work shows the versatile potential of epindolidione pigments for electronics applications.  相似文献   

18.
Meniscus‐guided coating (MGC) is mainly applicable on the soluble organic semiconductors with strong π–π overlap for achieving single‐crystalline organic thin films and high‐performance organic field‐effect‐transistors (OFETs). In this work, four elementary factors including shearing speed (v), solute concentration (c), deposition temperature (T), and solvent boiling point (Tb) are unified to analyze crystal growth behavior in the meniscus‐guided coating. By carefully varying and studying these four key factors, it is confirmed that v is the thickness regulation factor, while c is proportional to crystal growth rate. The MGC crystal growth rate is also correlated to latent heat (L) of solvents and deposition temperature in an Arrhenius form. The latent heat of solvents is proportional to Tb. The OFET channels grown by the optimized MGC parameters show uniform crystal morphology (Roughness Rq < 0.25 nm) with decent carrier mobilities (average µ = 5.88 cm2 V?1 s?1 and highest µ = 7.68 cm2 V?1 s?1). The studies provide a generalized formula to estimate the effects of these fabrication parameters, which can serve as crystal growth guidelines for the MGC approach. It is also an important cornerstone towards scaling up the OFETs for the sophisticated organic circuits or mass production.  相似文献   

19.
20.
White organic light‐emitting diodes (OLEDs) are highly efficient large‐area light sources that may play an important role in solving the global energy crisis, while also opening novel design possibilities in general lighting applications. Usually, highly efficient white OLEDs are designed by combining three phosphorescent emitters for the colors blue, green, and red. However, this procedure is not ideal as it is difficult to find sufficiently stable blue phosphorescent emitters. Here, a novel approach to meet the demanding power efficiency and device stability requirements is discussed: a triplet harvesting concept for hybrid white OLED, which combines a blue fluorophor with red and green phosphors and is capable of reaching an internal quantum efficiency of 100% if a suitable blue emitter with high‐lying triplet transition is used is introduced. Additionally, this concept paves the way towards an extremely simple white OLED design, using only a single emitter layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号