首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Long blood circulation in vivo remains a challenge to dual‐drug‐loaded nanocarriers for synergistic chemotherapy. Herein, a novel strategy to prepare lollipop‐like dual‐drug‐loaded nanoparticles (DOX–PDA–gossypol NPs) is developed based on the self‐assembly of gossypol, doxorubicin (DOX), and polydopamine (PDA) via π–π stacking. Dopamine polymerizes to PDA and fills the gaps between the gossypol and DOX molecules to form the super compact long‐circulating nanoparticles. The DOX–PDA–gossypol NPs show a suitable particle size of 59.6 ± 9.6 nm, high drug loading of 91%, superb stability, high maximum‐tolerated dose (MTD) of over 60 mg kg‐1, and negligible toxicity. These NPs also exhibit pH‐dependent drug release and low combination index (0.23). Notably, they show dramatically ultralong blood circulation (>192 h) with elimination half times 458‐fold and 258‐fold longer than that of free DOX and free gossypol, respectively. These values are markedly higher than most of the reported results. Therefore, the DOX–PDA–gossypol NPs have a high tumor accumulation of 12% remaining on the 8th day postinjection. This characteristic contributes to the excellent tumor comprehensive synergistic therapeutic efficacy (TIR > 90%) with low administration dosage and is benefitted for widening the drug therapeutic window. Thus, the proposed strategy has remarkable potential for tumor synergistic therapy.  相似文献   

2.
The acquisition of multidrug resistance (MDR) is a major hurdle for the successful chemotherapy of tumors. Herein, a novel hybrid micelle with pH and near‐infrared (NIR) light dual‐responsive property is reported for reversing doxorubicin (DOX) resistance in breast cancer. The hybrid micelles are designed to integrate the pH‐ and NIR light‐responsive property of an amphiphilic diblock polymer and the high DOX loading capacity of a polymeric prodrug into one single nanocomposite. At physiological condition (i.e., pH 7.4), the micelles form compact nanostructure with particle size around 30 nm to facilitate blood circulation and passive tumor targeting. Meanwhile, the micelles are quickly dissociated in weakly acidic environment (i.e., pH ≤ 6.2) to release DOX prodrug. When exposed to NIR laser irradiation, the hybrid micelles can trigger notable tumor penetration and cytosol release of DOX payload by inducing tunable hyperthermia effect. In combination with localized NIR laser irradiation, the hybrid micelles significantly inhibit the growth of DOX‐resistant MCF‐7/ADR breast cancer in an orthotopic tumor bearing mouse model. Taken together, this pH and NIR light‐responsive micelles with hyperthermia‐triggered tumor penetration and cytoplasm drug release can be an effective nanoplatform to combat cancer MDR.  相似文献   

3.
Nanocarriers for chemo‐photothermal therapy suffer from insufficient retention at the tumor site and poor penetration into tumor parenchyma. A smart drug‐dye‐based micelle is designed by making the best of the structural features of small‐molecule drugs. P‐DOX is synthesized by conjugating doxorubicin (DOX) with poly(4‐formylphenyl methacrylate‐co‐2‐(diethylamino) ethyl methacrylate)‐b‐polyoligoethyleneglycol methacrylate (P(FPMA‐co‐DEA)‐b‐POEGMA) via imine linkage. Through the π–π stacking interaction, IR780, a near‐infrared fluorescence dye as well as a photothermal agent, is integrated into the micelles (IR780‐PDMs) with the P‐DOX. The IR780‐PDMs show remarkably long blood circulation (t1/2β = 22.6 h). As a result, a progressive tumor accumulation and retention are presented, which is significant to the sequential drug release. Moreover, when entering into a moderate acidic tumor microenvironment, IR780‐PDMs can dissociate into small‐size conjugates and IR780, which obviously increases the penetration depth of drugs, and then improves the lethality to deep‐seated tumor cells. Owing to the high delivery efficiency and superior chemo‐photothermal therapeutic efficacy of IR780‐PDMs, 97.6% tumor growth in the A549 tumor‐bearing mice is suppressed with a low dose of intravenous injection (DOX, 1.5 mg kg?1; IR780, 0.8 mg kg?1). This work presents a brand‐new strategy for long‐acting intensive cancer therapy.  相似文献   

4.
Multidrug resistance (MDR) resulting from overexpression of P‐glycoprotein (Pgp) transporters increases the drug efflux and thereby limits the chemotherapeutic efficacy. It is desirable to administer both an MDR1 gene silencer and a chemotherapeutic agent in a sequential way to generate a synergistic therapeutic effect in multidrug‐resistant cancer cells. Herein, an anti‐MDR1 molecular beacon (MB)‐based micelle (a‐MBM) nanosystem is rationally designed. It is composed of a diacyllipid core densely packed with an MB corona. One of Pgp‐transportable agents, doxorubicin (DOX), is encapsulated in the hydrophobic core of the micelle and in the stem sequence of MB. The a‐MBM‐DOX nanosystem shows an efficient self‐delivery, enhanced enzymatic stability, excellent target selectivity, and high drug‐loading capacity. With its relatively high enzymatic stability, a‐MBM‐DOX initially facilitates intracellular MDR1 mRNA imaging to distinguish multidrug‐resistant and non‐multidrug‐resistant cells and subsequently downregulates the MDR1 gene expression owing to an antisense effect. After that, the MB corona is degraded, destroying the micellar nanostructure and releasing DOX, which result in a high accumulation of DOX in OVCAR8/ADR cells and a high chemotherapeutic efficacy because of successful restoration of drug sensitivity. This micelle approach has the potential for both visualizing MDR1 mRNA and overcoming MDR in a sequential and synergistic way.  相似文献   

5.
Novel paclitaxel‐loaded polymer nanoparticles were developed for circumventing multidrug resistance (MDR) of malignant cancerous diseases, which is an unsolved clinical problem in cancer chemotherapy. In many cases, MDR is due to the intrinsic or acquired expression of an efflux pump, the P‐170 glycoprotein (P‐gp). By encapsulating paclitaxel in a water‐soluble and biocompatible synthetic polyampholyte using a solid‐state reaction the highly water‐soluble paclitaxel‐loaded nanoparticles are formed. The resulting paclitaxel nanoparticles with an average diameter of 250 nm show a significant reversal of chemoresistance in the drug‐resistant variants (MCF7/ADR, MT3/ADR) by a factor of 100 or more. The novel paclitaxel nanoparticles enter MDR breast cancer cells by adsorptive endocytosis bypassing the P‐gp, preventing the efflux of paclitaxel and thus restoring the anti‐proliferative effect of paclitaxel.  相似文献   

6.
Efficient nuclear delivery of anticancer drugs evading drug efflux transporters (DETs) on the plasma and nuclear membranes of multidrug‐resistant cancer cells is highly challenging. Here, smart nanogels are designed via a one‐step self‐assembly of three functional components including a biocompatible copolymer, a fluorescent organosilica nanodot, and a photodegradable near‐infrared (NIR) dye indocyanine green (ICG). The rationally designed nanogels have high drug encapsulation efficiency (≈99%) for anticancer drug doxorubicin (Dox), self‐traceability for bioimaging, proper size for passive tumor targeting, prolonged blood circulation time for enhanced drug accumulation in tumor, and photocontrolled disassemblability. Moreover, the Dox‐loaded nanogels can effectively kill multidrug‐resistant cells via two steps: 1) They behave like a “Trojan horse” to escape from the DETs on the plasma membrane for efficiently transporting the anticancer “soldier” (Dox) into the cytoplasm and preventing the drugs from being excreted from the cells; 2) Upon NIR light irradiation, the photodegradation of ICG leads to the disassembly of the nanogels to release massive Dox molecules, which can evade the DETs on the nuclear membrane to exert their intranuclear efficacy in multidrug‐resistant cells. Combined with their excellent biocompatibility, the nanogels may provide an alternative solution for overcoming cancer multidrug resistance.  相似文献   

7.
Poly(3,4‐ethylenedioxythiophene):poly(4‐styrenesulfonate) (PEDOT:PSS) nanoparticles, after being coated with polyethylene glycol (PEG), are used as a drug carrier to load various types of aromatic therapeutic molecules, including chemotherapy drugs doxorubicin (DOX) and SN38, as well as a photodynamic agent chlorin e6 (Ce6), through ππ stacking and hydrophobic interaction. Interesting functionalities of PEDOT:PSS‐PEG as an unique versatile drug delivery platform are discovered. Firstly, for water‐insoluble drugs such as SN38, the loading on PEDOT:PSS‐PEG dramatically enhances its water solubility, while maintaining its cytotoxicity to cancer cells. Secondly, the delivery of Ce6 by PEDOT:PSS‐PEG is able to remarkably accelerate the cellular uptake of Ce6 molecules, and thus offers improved photodynamic therapeutic efficacy. Using DOX‐loaded PEDOT:PSS‐PEG as the model system, it is demonstrated that the photothermal effect of PEDOT:PSS‐PEG can be utilized to promote the delivery of this chemotherapeutic agent, achieving a combined photothermal‐ and chemotherapy with an obvious synergistic cancer killing effect. Moreover, it is also shown that multiple types of therapeutic agents could be simultaneously loaded on PEDOT:PSS‐PEG nanoparticles and delivered into cancer cells. This work highlights the great potential of NIR‐absorbing polymeric nanoparticles as multifunctional drug carriers for potential cancer combination therapy with high efficacy.  相似文献   

8.
Hierarchical assemblies of perylenetetracarboxylic diimide bridged silsesquioxane (PDBS) with controlled structure at multi‐length scale are studied using both experimental and computational methods. The organization process spans multi‐length scales and includes three continuous steps: 1) stacking of the preprogrammed molecules into small clusters, 2) growing of the small clusters into nanoscale building blocks with various sizes and shapes depending on the experimental conditions, and 3) aggregation of nanoscale building blocks into micro‐ or macro‐scale assemblies. The main factors determining the assembly morphology are the second and third steps, which can be controlled by varying the experimental conditions, such as solution drying rate, solvent composition, and PDBS concentration. Despite the different morphologies, all of these assemblies possess highly ordered lamellar structure. It is found that incorporating perylenetetracarboxylic diimide (PD) moieties into the highly ordered silica network endows the PD components with high thermal and mechanical stability, as well as improved optical and electronic properties.  相似文献   

9.
Multidrug resistance (MDR) is an issue that is not only related to cancer cells but also associated with the tumor microenvironments. MDR involves the complicated cancer cellular events and the crosstalk between cancer cells and their surroundings. Ideally, an effective system against MDR cancer should take dual action on both cancer cells and tumor microenvironments. The authors find that both the drug‐resistant colon cancer cells and the protumor M2 macrophages highly express two nutrient transporters, i.e., secreted protein acidic and rich in cysteine (SPARC) and mannose receptors (MR). By targeting SPARC and MR, a system can act on both cancer cells and M2 macrophages. Herein the authors develop a mannosylated albumin nanoparticles with coencapsulation of different drugs, i.e., disulfiram/copper complex (DSF/Cu) and regorafenib (Rego). The results show that combination therapy of DSF/Cu and Rego efficiently inhibits the growth of drug‐resistant colon tumor, and the combination has not been reported yet for use in anticancer treatment. The system significantly improves the treatment outcomes in the animal model bearing drug‐resistant tumors. The therapeutic mechanisms involve enhanced apoptosis, upregulation of intracellular ROS, anti‐angiogenesis, and tumor‐associated macrophage “re‐education.” This strategy is characterized by dual targeting to and the simultaneous action on cancer cells and M2 macrophages, with biomimetic codelivery of a novel drug combination.  相似文献   

10.
A novel drug‐formulation protocol is developed to solve the delivery problem of hydrophobic drug molecules by using inorganic mesoporous silica nanocapsules (IMNCs) as an alternative to traditional organic emulsions and liposomes while preserving the advantages of inorganic materials. The unique structures of IMNCs are engineered by a novel fluoride‐silica chemistry based on a structural difference‐based selective etching strategy. The prepared IMNCs combine the functions of organic nanoemulsions or nanoliposomes with the properties of inorganic materials. Various spherical nanostructures can be fabricated simply by varying the synthetic parameters. The drug loading amount of a typical highly hydrophobic anticancer drug‐camptothecin (CPT) in IMNCs reaches as high as 35.1 wt%. The intracellular release of CPT from carriers is demonstrated in situ. In addition, IMNCs can play the role of organic nanoliposome (multivesicular liposome) in co‐encapsulating and co‐delivering hydrophobic (CPT) and hydrophilic (doxorubicin, DOX) anticancer drugs simultaneously. The co‐delivery of multi‐drugs in the same carrier and the intracellular release of the drug combinations enables a drug delivery system with efficient enhanced chemotherapeutic effect for DOX‐resistant MCF‐7/ADR cancer cells. The special IMNCs‐based “inorganic nanoemulsion”, as a proof‐of‐concept, can also be employed successfully to encapsulate and deliver biocompatible hydrophobic perfluorohexane (PFH) molecules for high intensity focused ultrasound (HIFU) synergistic therapy ex vivo and in vivo. Based on this novel design strategy, a wide range of inorganic material systems with similar “inorganic nanoemulsion or nanoliposome” functions will be developed to satisfy varied clinical requirements.  相似文献   

11.
Photodynamic therapy (PDT) mediated by near‐infrared (NIR) dyes is a promising cancer treatment modality; however, its use is limited by significant challenges, such as hypoxic tumor microenvironments and self‐quenching of photosensitizers. These challenges hamper its utility in inducing immunogenic cell death (ICD) and triggering potent systemic antitumor immune responses. This study demonstrates that molecular dispersion of NIR dyes in nanocarriers can significantly enhance their ability to produce reactive oxygen species and potentiate synergistic PDT and photothermal therapy against tumors. Specifically, NIR dye indocyanine green (ICG) can be spontaneously adsorbed to covalent organic frameworks (COFs) via π–π conjugations to prevent intermolecular stacking interactions. Then, ICG‐loaded COFs are ultrasonically exfoliated and coated with polydopamine (PDA) to construct a new phototherapeutic agent ICG@COF‐1@PDA with enhanced efficacy. In conjunction with ICG@COF‐1@PDA, a single round of NIR laser irradiation can induce obvious ICD, elicit antitumor immunity in colorectal cancer, and yield 62.9% inhibition of untreated distant tumors. ICG@COF‐1@PDA also exhibits notable phototherapeutic efficacy against 4T1 murine breast to lung metastasis, a spontaneous metastasis mode for triple‐negative breast cancers (TNBCs). Overall, this study reveals a novel nanodelivery system for molecular dispersion of NIR dyes, which may present new therapeutic opportunities against primary and metastatic tumors.  相似文献   

12.
Chemotherapy, as one of the principal modalities for cancer therapy, is limited by its inefficient delivery, serious side effects as well as multidrug resistance (MDR). Herein, multifunctional aptamer‐tethered deoxyribonucleic acids (DNA) polycatenanes (AptDPCs) is reported to combat MDR human leukemia. By rational design, the DNA polycatenanes (DPCs) are first constructed by a one‐step self‐assembly approach, during which DPCs are incorporated with fluorophores for bioimaging, abundant doxorubicin (DOX) intercalation sites for drug delivery, and antisense oligonucleotides (AS ODNs) for inhibiting the expression of P‐glycoprotein (P‐gp) and further reversing MDR. In addition, to endow the DPCs with specific recognition toward the target cancer cells and high purity, aptamers are tethered to the DPCs via the magnetic separation method based on the toehold‐mediated strand displacement (TMSD) reaction, which not only improves the purity and reproducibility of the AptDPCs, but also realizes the recycle of magnetic carriers. The results confirm that the AptDPCs can deliver drugs and AS ODNs into the target cancer cells and synergistically inhibit the MDR tumor growth without apparent systematic toxicity. The proposed AptDPC‐based drug delivery system can effectively reduce side effects and reverse MDR, which provides a promising platform for codelivery of therapeutic genes and chemodrugs in targeted cancer therapy.  相似文献   

13.
Nanoparticular drug delivery systems may help to overcome the limitations of conventional chemotherapy. They have been reported to improve the specificity of distribution, the bioavailability, and the solubility of drugs, as well as the duration of drug efficacy, and helping to overcome multidrug resistance. Although various polymeric nanoparticles have been developed for delivery of anticancer agents, most nanoparticles still focus on solubilizing drugs, improving targeting ability, and reducing side effects. In particular, targeting to the tumor is typically improved through passive or active targeting. Despite great achievements in both strategies, yet to be resolved are issues of toxicity in normal cells and enhancement of tumor‐specificity. A new approach combining the dual strategies of passive tumor targeting and cancer‐selective efficacy is proposed. Recombinant human gelatin conjugated with lipoic acid (rHG‐LA) developed in this study forms nanoparticles spontaneously in aqueous solution and encapsulates alpha‐tocopheryl succinate (α‐TOS), a well‐known cancer‐selective apoptosis‐inducing agent, within a hydrophobic core during the self‐assembly. This study describes the promising applicability of α‐TOS‐loaded rHG‐LA nanoparticles with passive targeting ability and cancer‐specificity.  相似文献   

14.
Construction of multifunctional stimuli‐responsive nanosystems intelligently responsive to inner physiological and/or external irradiations based on nanobiotechnology can enable the on‐demand drug release and improved diagnostic imaging to mitigate the side‐effects of anticancer drugs and enhance the diagnostic/therapeutic outcome simultaneously. Here, a triple‐functional stimuli‐responsive nanosystem based on the co‐integration of superparamagnetic Fe3O4 and paramagnetic MnOx nanoparticles (NPs) onto exfoliated graphene oxide (GO) nanosheets by a novel and efficient double redox strategy (DRS) is reported. Aromatic anticancer drug molecules can interact with GO nanosheets through supramolecular π stacking to achieve high drug loading capacity and pH‐responsive drug releasing performance. The integrated MnOx NPs can disintegrate in mild acidic and reduction environment to realize the highly efficient pH‐responsive and reduction‐triggered T1‐weighted magnetic resonance imaging (MRI). Superparamagnetic Fe3O4 NPs can not only function as the T2‐weighted contrast agents for MRI, but also response to the external magnetic field for magnetic hyperthermia against cancer. Importantly, the constructed biocompatible GO‐based nanoplatform can inhibit the metastasis of cancer cells by downregulating the expression of metastasis‐related proteins, and anticancer drug‐loaded carrier can significantly reverse the multidrug resistance (MDR) of cancer cells.  相似文献   

15.
A high‐performance naphthalene diimide (NDI)‐based conjugated polymer for use as the active layer of n‐channel organic field‐effect transistors (OFETs) is reported. The solution‐processable n‐channel polymer is systematically designed and synthesized with an alternating structure of long alkyl substituted‐NDI and thienylene–vinylene–thienylene units (PNDI‐TVT). The material has a well‐controlled molecular structure with an extended π‐conjugated backbone, with no increase in the LUMO level, achieving a high mobility and highly ambient stable n‐type OFET. The top‐gate, bottom‐contact device shows remarkably high electron charge‐carrier mobility of up to 1.8 cm2 V?1 s?1 (Ion/Ioff = 106) with the commonly used polymer dielectric, poly(methyl methacrylate) (PMMA). Moreover, PNDI‐TVT OFETs exhibit excellent air and operation stability. Such high device performance is attributed to improved π–π intermolecular interactions owing to the extended π‐conjugation, apart from the improved crystallinity and highly interdigitated lamellar structure caused by the extended π–π backbone and long alkyl groups.  相似文献   

16.
Biocompatible, multifunctional, stimuli responsive, and high drug loading capacity are key factors for the new generation of drug delivery platforms. However, it is extremely challenging to create such a platform that inherits all these advanced properties in a single carrier. Herein, porous silicon nanoparticles (PSi NPs) and giant liposomes are assembled on a microfluidic chip as an advanced nano‐in‐micro platform (PSi NPs@giant liposomes), which can co‐load and co‐deliver hydrophilic and hydrophobic drugs combined with synthesized DNA nanostructures, short gold nanorods, and magnetic nanoparticles. The PSi NPs@giant liposomes with photothermal and magnetic responsiveness show good biocompatibility, high loading capacity, and controllable release. The hydrophilic thermal oxidized PSi NPs encapsulate hydrophobic therapeutics within the hydrophilic core of the giant liposomes, endowing high therapeutics loading capacity with tuneable ratio and controllable release. It is demonstrated that the DAO‐E A DNA nanostructures have synergism with drugs and importantly they contribute to the significant enhancement of cell death to doxorubicin‐resistant MCF‐7/DOX cells, overcoming the multidrug resistance in the cancer cells. Therefore, the PSi NPs@giant liposomes nano‐in‐micro platform hold great potential for a cocktail delivery of drugs and DNA nanostructures for effective cancer therapy, controllable drug release with tuneable therapeutics ratio, and both photothermal and magnetic dual responsiveness.  相似文献   

17.
Next generation electronic products, such as wearable electronics, flexible displays, and smart mobile phones, will require the use of unprecedented electroactive soft actuators for haptic and stimuli‐responsive devices and space‐saving bio‐mimetic actuation. Here, a bio‐inspired all‐organic soft actuator with a π–π stacked and 3D ionic networked membrane based on naphthalene‐tetracarboxylic dianhydride (Ntda) and sulfonated polyimide block copolymers (SPI) is presented, utilizing an ultra‐fast solution process. The π–π stacked and self‐assembled 3D ionic networked membrane with continuous and interconnected ion transport nanochannels is synthesized by introducing simple and strong atomic level regio‐specific interactions of hydrophilic and hydrophobic SPI co‐blocks with cations and anions in the ionic liquid. Furthermore, a facile and ultrafast all‐solution process involving solvent blending, dry casting, and solvent dropping is developed to produce electro‐active soft actuators with highly conductive polyethylenedioxythiophene (PEDOT):polystyrenesulfonate (PSS) electrodes. Ionic conductivity and ion exchange capacity of the π–π stacked Ntda‐SPI membrane can be increased up to 3.1 times and 3.4 times of conventional SPI, respectively, resulting in a 3.2 times larger bending actuation. The developed bio‐inspired soft actuator is a good candidate for satisfying the tight requirements of next generation soft electronic devices due to its key benefits such as low operating voltage and comparatively large strains, as well as quick response and facile processability.  相似文献   

18.
Under first‐principles computations, a simple strategy is identified to modulate the electronic and magnetic properties of zigzag graphene nanoribbons (zGNRs). This strategy takes advantage of the effect of the floating dipole field attached to zGNRs via ππ interactions. This dipole field is induced by the acceptor/donor functional groups, which decorate the ladder‐structure polydiacetylene derivatives with an excellent delocalized π‐conjugated backbone. By tuning the acceptor/donor groups, –C≡C– number, and zGNR width, greatly enriched electronic and magnetic properties, e.g., spin gapless semiconducting, half‐metallic, and metallic behaviors, with the antiferromagnetic?ferromagnetic conversion can be achieved in zGNRs with perfect, 57‐reconstructed, and partially hydrogenated edge patterns.  相似文献   

19.
A unique mesoporous silica nanoparticles (MSNs)‐based theranostic platform with ultrasmall iron oxide nanoparticles (NPs) confined within mesopore network has been developed by a facile but efficient physical‐vapor‐infiltration (PVI) method. The highly dispersed Fe species within mesopore channels can synchronously function as the non‐toxic contrast agents for highly efficient T1‐weighted MR imaging, and as anchoring sites for anti‐cancer drug molecule loading and pH‐responsive release based on the special metal‐ligand coordination bonding between the Fe species and drug molecules. Moreover, the obtained Fe‐MSNs exhibit favorable biocompatibility, enhanced chemotherapeutic efficacy and concurrently diminished side effects due to the non‐specific attack of chemotherapeutic drugs, as well as the capability in circumventing the multidrug resistance (MDR) of cancer cells and suppressing the metastasis of tumor cells in vitro and in vivo. This pH‐resoponsive theranostic agent provides a new promising MSNs‐based anti‐cancer nanomedicine for future biomedical application.  相似文献   

20.
A series of hydrogels with continuously regulatable release behavior can be achieved by incorporating hydrogen bonding and π–π stacking co‐switches in polymers. A poly(nitrophenyl methacrylate‐co‐methacrylic acid) hydrogel (NPMAAHG) for control over drug release is fabricated by copolymerizing 4‐nitrophenyl methacrylate and methacrylic acid using ethylene glycol dimethacrylate as a crosslinker. The carboxylic acid groups and nitrylphenyl groups form hydrogen bonds and π–π stacking interactions, respectively, which act as switches to control the release of guest molecules from the polymers. As revealed by the simulated gastrointestinal tract drug release experiments, the as‐synthesized NPMAAHG hydrogels can be regulated to release only 4.7% of drugs after 3 h in a simulated stomach and nearly 92.6% within 43 h in the whole digestive tract. The relation between the release kinetics and structures and the mechanism of the smart release control are analyzed in terms of diffusion exponent, swelling interface number, drug diffusion coefficient, and velocity of the swelling interface in detail. The results reveal that the release of guest molecules from the hydrogels can be continuously regulated for systemic administration by controlling the ratio of the hydrophilic hydrogen bonds and the hydrophobic π–π stacking switches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号